• Title/Summary/Keyword: 전자기초음파

Search Result 9, Processing Time 0.024 seconds

Application of a Fiber Fabry-Pérot Interferometer Sensor for Receiving SH-EMAT Signals (SH-EMAT의 신호 수신을 위한 광섬유 패브리-페롯 간섭계 센서의 적용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.165-170
    • /
    • 2014
  • Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-P$\acute{e}$rot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

A Study on the Intensity Measurng of Ultrasonics by Added Two Sensive point of Thermocouple (이감온점 열전대에 의한 초음파의 강도측정에 관한 연구)

  • Kim, Ju-Hong;Lee, Dong-Hwi;O, Yeong-Don
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.6
    • /
    • pp.1-7
    • /
    • 1971
  • This paper describes concerning the method of measurement for the intensity of ultrasonics in liquid. The probe which is added two sensive point of thermocople which is surrounded by the absorbed material of sonic wave on the both side of the refleftite plate have measured the intensity of ultrasonics indirectly by the difference of the temperature of two sensive point which had raised the temperature by the sonic wave and its reflective wave which transmitted the ultrasonic energy. This minify the influence from the temparature of liquid and time constant. Consequently, this is the basic industrial method which is with in the bounds of possibility on the simple measurement of the intensity of the local ultrasonics concerning direction of its propagation.

  • PDF

Flaw Detection in Pipe-Welded Zone by Using Wavelet Transform and SH-EMAT (웨이브렛 변환과 SH-EMAT을 이용한 배관 용접부 결함 검출)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1511-1519
    • /
    • 2012
  • Pipe structures contain many welded zones, and ultrasonic tests are increasingly being performed by using automated testing devices in order to evaluate the weld integrity. An electromagnetic acoustic transducer (EMAT) is a noncontact transducer that can transmit or receive ultrasonic waves without a couplant. Furthermore, it can easily generate specific guided waves such as SH (shear horizontal) or Lamb waves by altering the design of the coil and magnet. Therefore, an EMAT should be useful for application to an automated ultrasonic inspection system. In this study, SH waves generated using an EMAT were applied to inspect the pipe-weld zone. To analyze the specific SH mode (SH0) from the SH wave signals, wavelet transform was applied. It was found that flaws could be detected precisely because the intensity of the $SH_0$ mode-frequency, which is analyzed by using wavelet transform, is proportional to the length of the flaw.

Performance analysis of CSMA based MAC protocols for underwater communications (수중 통신에 적합한 CSMA기반 매체접근제어 프로토콜 연구)

  • Song, Min-Je;Jang, Youn-Seon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1068-1072
    • /
    • 2018
  • In underwater communications, there are many challenges due to energy limitations, long propagation delay, low data rate, and high power loss, unlike terrestrial RF communications. Especially, the propagation delay of underwater acoustic channel is five orders of magnitude higher than in electro-magnetic terrestrial channels due to the low speed of sound(1,500m/s). Thus, the MAC protocols for terrestrial communications are not suitable for underwater network. In this paper, we studied the considerations for MAC protocol in underwater acoustic channel. Here, we concentrated on CSMA based MAC protocols. From the results, we confirmed that the number of control packets has an important effect on the performance in underwater environment. These results would be useful in designing MAC protocols for underwater acoustic communications.

On Characterization for Stacking Fault Evaluation of CF/Epoxy Composite Laminates Using an EMAT Ultrasonics (전자기 초음파를 이용한 CF/Epoxy 복합적층판의 적층결함 특성평가)

  • Im Kwanghee;Na Seungwoo;Hsu David K.;Lee Changro;Park Jewoung;Sim Jaeki;Yang Inyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.254-257
    • /
    • 2004
  • An electromagnetic acoustic transducers (EMAT) can usually generate or detect an ultrasonic wave into specimens across a small gap. Especially stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences there properties. It is very important to evaluate the layup errors in prepreg laminates. A nondestructive technique can therefore serve as a useful measurement for detecting layup errors. It was shown experimentally that this shear waves for detecting the presence of the errors is very sensitive. It is found that high probability shows between tests and the model developed in characterizing cured layups of the laminates. Also a C-scan method was used for detecting layup of the laminates because of extracting fiber orientation information from the ultrasonic reflection caused by structural imperfections in the laminates. Therefore, it was found that interface C-scan images show the fiber orientation information by using two-dimensional fast Fourier transform(2-D FFT).

  • PDF

Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines (화력발전소 보일러 튜브 및 대형 유체수송관 자동 진단을 위한 이동로봇 시스템 개발)

  • Park, Sang-Deok;Jeong, Hee-Don;Lim, Zhong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • In this study, two types of mobile robotic systems using NDT (Non-destructive testing) method are developed for automatic diagnosis of the boiler tubes and large size pipelines. The developed mobile robots crawl the outer surface of the tubes or pipelines and detect in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer). Automation of fault detection by means of mobile robotic systems for these large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment.

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.

A Study on Characterization for Stacking Fault Evaluation of CFRP Composite Laminates Using an EMAT Ultrasonics (전자기 초음파를 이용한 CFRP 복합적층판의 적층배향 특성평가에 관한 연구)

  • Im, Kwang-Hee;Na, Seung-Woo;Kim, Ji-Hoon;Lee, Chang-Ro;Hsu, David K.;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • An electromagnetic acoustic transducer (EMAT) is a unique probe that does not require a couplant or gel and also can usually generate or detect an ultrasonic wave into specimens across a small gap. It, therefore can be applied in a noncontact mode with a high degree of reproducibility. Especially stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates. It is very important to evaluate the layup errors in prepreg laminates. A nondestructive technique can therefore serve as a useful measurement for detecting layup errors. This shear wave for detecting the presence of the errors is very sensitive. A decomposition model has been used in the interpretation and prediction of test results. Test results have been com pared with model data. It is found that the high probability shows between tests and the model utilized in characterizing cured layups of the laminates. Also a C-scan method was used for detecting layup of the laminates because of extracting fiber orientation information from the ultrasonic reflection caused by structural imperfections in the laminates. Therefore, it was found that interface C-scan images show the fiber orientation information by using two-dimensional fast Fourier transform (2-D FFT).

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.