• Title/Summary/Keyword: 전자기력 유동

Search Result 11, Processing Time 0.025 seconds

Numerical and Experimental Study on Recirculation Flow Driven by an AC Electromagnetic Force in a Circular Container (교류전자기력에 의해 구동되는 원형 용기 내의 순환유동에 관한 수치해석적 및 실험적 연구)

  • Suh, Ga-Hyun;Suh, Seung-Gyu;Choe, Jong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1265-1272
    • /
    • 2011
  • We performed numerical simulations of the recirculation flow of an electrolyte fluid in a circular container driven by an AC electromagnetic force for solving continuity and momentum equations. We also conducted an experiment to obtain flow data, which were in good agreement with the numerical simulation results. Furthermore, we performed a parametric study on both numerical and experimental aspects and found that the fluid velocity increases with an increase in the electrolyte concentration and magnetic intensity and with a decrease in the fluid depth and AC frequency.

Numerical Investigation of Cross- Flow of a Circular Cylinder Under an Electromagnetic Force (전자기력을 이용한 유동제어에 관한 수치해석적 연구)

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.148-153
    • /
    • 2001
  • A computational investigation of the effect of the electromagnetic force(or Lorentz force) on the flow behavior around a circular cylinder, a typical model of bluff bodies, is conducted. Two-dimensional unsteady flow computation for $Re=10^2$ is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of the spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of the circular cylinder cross-flow, leading to the reduction of the drag.

  • PDF

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

A Study on the Magnetic Fluid driven by Electromagnetic Force (전자기력에 의한 자성유체의 구동에 관한 연구)

  • Nam Seong-won
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF

Test Study about Electro magnetic force effect to apply dredging soil transport (준설토 이송시 유동효율에 미치는 전자기장 인가 영향에 대한 실험적 고찰)

  • Kim, Yuseung;Lee, Myunghan;Lee, Yunjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2883-2890
    • /
    • 2015
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field(500m dredging soil transport length). As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler.

The Analysis of Flow Characteristics of Conductive Liquid Metal Using TLIM Electromagnetic Pump (TLIM 전자펌프를 이용한 전도성 용융금속의 유동특성 해석)

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.130-141
    • /
    • 2008
  • This paper presents the flow characteristics in the fluid circulation loop using the tubular type linear induction motor(TLIM) electromagnetic pump. A TLIM of thrust 40[N] is analyzed using the equivalent and genetic algorithm for the system The flow characteristics are analyzed by coupling the Maxwell equations with the Navier-Stokes equation with the thrust. The analysis algorithm is developed for analyzing the liquid metal flow in the system for laminar and turbulent flow. And the effect of thrust is analyzed for the flow characteristics.

Design of an Electromagnetic Pump and Numerical Analysis of the Liquid Metal Flow (전자기펌프의 설계 및 액체금속 유동의 수치해석)

  • Kwon, Jeong-Tae;Kim, Seo-Hyun;Nahm, Taek-Hoon;Lim, Hyo-Jae;Kim, Chang-Eob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2589-2595
    • /
    • 2009
  • An electromagnetic pump has been designed using Load Distribution Method and Equivalent Circuit Method, and installed in a liquid metal flow system. The relation between the driving power of he electromagnetic pump and the flow rate was proposed. Also, the flow velocity and flow rate has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The calculation results were analyzed and compared with data from a commercial Code, FLUENT. They agreed well with each other within an error of 5%.

Effect of aerodynamic drag force on liquid metal convection in GTA welding (GTA 용접시 발생하는 용융금속의 유동에 미치는 공기역학적 향력의 영향)

  • 나석주;김성도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.575-583
    • /
    • 1991
  • The weld pool convection problem that occurs during the stationary GTA welding has been studied, considering the four driving forces for weld pool convection, i.e., the electromagnetic force, the buoyancy force, the aerodynamic drag force, and the surface tension force at the weld pool surface. In the numerical simulation, the difficulties associated with the irregular moving liquid-solid interface have been successfully overcome by adopting a Boundary-Fitted Coordinate system. In the experiments to show the validity of the numerical analysis, a deep periphery and shallow centerpentrated weld pool shape was observed from the etched specimen. It could be revealed that this type of weld pool shape could be simulated, only when some of aerodynamic drag force distributions are considered. Although slight disagreement arose, the calculated and the observed weld pool shapes were in a reasonable agreement.

Analysis of Duct Flow Characteristics under an Electromagnetic Force (전자기력에 의한 덕트 내부의 유동특성)

  • Kim, Min-Seok;Kim, Jung-Hyun;Jeon, Mun-Ho;Kim, Chang-Eob;Kim, Seo-Hyun;Kwon, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.141-143
    • /
    • 2007
  • This paper presents the MHD characteristics of the liquid metal flow. The electromagnetic force was calculated by the equivalent circuit method. This Lorentz force was used as a source term for the fluid flow equations. The modified Navier-Stokes equation was solved to give the velocity distributions of the liquid metal flow.

  • PDF