• Title/Summary/Keyword: 전열계수

Search Result 117, Processing Time 0.025 seconds

Fluidization and Heat Transfer Characteristics in the Fluidized Bed(II) (기일고류동층내류동화(氣一固流動層內流動化) 및 전열특성(傳熱特性)에 관한 연구(硏究)(II))

  • Park, Jong-Suen;Baek, Ko-Kil;Kim, Yeun-Young;Jeon, Sung-Taek
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.51-60
    • /
    • 1994
  • The fluidization characteristics of the furan foundry sand fluidized bed and the heat transfer characteristics on a single spiral coil tube in the bed have been investigated. In the paper, the heat transfer coefficients for a single spiral coil tube are measured in the furan foundry sand bed as a function of the ratio of heated coil tube pitch to diameter(p/Do) and the ratio of heated coil tube pitch to particle size(p/dp). The experimental results are as follows. 1) Mean heat transfer coefficients increases according to the increasing ratio of heated coil tube pitch to diameter(p/Do). 2) The Increasing rates of mean Nusselt numbers are more greater in the case of p/Do=1.58 than p/Do=4.75. 3) Mean Nusselt number can be expressed by the following equation, $Nu_{mean}=C\;Re^m\;Pr_g^{0.4}(p/dp)^n$.

  • PDF

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

An Experimental Study on the Promotion of the Waste-Heat Recovery in the Fluidized Beds used in Reclamation of Foundry Sand (주물사 재생 유동층내 폐열회수 증진에 관한 실험적 연구)

  • Baek, Ko-Kil;Park, Jong-Suen;Lee, Eun-Pyo;Choi, Sung-Ill;Choi, Guk-Gwang;Jeon, Sung-Taek
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 1998
  • In this experimental study, for obtaining the data to be used in the increased recover rate of waste heat from the recirculated sand, the furan foundry sand were used as the fluidized particle in the fluidized bed in which the smooth, spiral and finned tubes($Do={\varphi}12.7$) were horizontally installed and used as the heat-transfer tubes. The heat transfer experiments were performed in the conditions of water Reynolds number of inside tubes in the range of 4,000 to 18,000 and particle Reynolds number of outside tube in the range of 0.8 to 7.5. The heat-transfer coefficients(ho) increase as the higher inside temperature of the fluidized bed and the maximum heat-transfer coefficients can be obtained in the range of 3.5 to 5.5 of particle Reynolds number in the all tubes. The maximum Nu numbers of smooth, spiral and finned tubes are figured as about 1:1.5:3 in order even if the ratios show little different as the temperatures of bed.

  • PDF

Condensation heat transfer coefficients of alternative refrigerants for CFC11, CFC12 and HCFC22 (CFC11, CFC12, HCFC22 대체냉매의 응축 열전달계수)

  • 정동수
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.5
    • /
    • pp.389-395
    • /
    • 1999
  • 냉동공조설비, 발전설비, 화학플랜트설비 등에 사용되는 응축기는 주로 증기가 관의 외부에서 응축을 하고 냉각수가 관 내부로 흐르는 쉘-튜브(shell and tube)형 태를 취하고 있다. 초기투자비용 및 운전비용을 줄이기 위해서는 응축기의 열교환 성능을 향상시키는 일이 필수적이며 이를 위해 코팅 표면(coated surfaces), 거친 표면(rough surfaces), 코일 튜브(coiled tubes), 선회 흐름장치(swirl flow), 전열면적을 넓힌 낮은 핀관과 3차원 형상을 갖는 열전달 촉진관의 사용이 제시되고 있다.

  • PDF

Research on the Performance of Total Heat Exchanger in a Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기 성능에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, J.R.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • This report Introduces a total heat exchanger in a solar air-conditioning system using Lithium Chloride(LiCl) solution. The hot and humid outside air is cooled and dehumidified by LiCl solution that is sprayed on the packed layer of the total heat exchanger. LiCl solution once diluted is concentrated again in a regenerator using solar energy. Three types as the packed materials were used in this experiment and the dehumidification performance was evaluated by the value of $k_xa(kg/h{\cdot}m^3{\cdot}{\Delta}x)$, overall mass transfer coefficient based on a humidity ratio potential difference, the influence of inlet LiCl solution flow rate, air flow rate, packed layer height on $k_xa$ was investigated. It was found that air flow rate, LiCl solution flow rate, packed layer height for all types had a great influnce on the value of $k_xa$.

  • PDF

Numerical Analysis of Added Mass Coefficient for Outer Tubes of Tube Bundle in a Circular Cylindrical Shell (원통 내부에 배열된 외곽 전열관의 유체 부가질량계수 해석)

  • Yang, Keum-Hee;Ryu, Ki-Wahn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 2016
  • According to the wear detection history for the steam generator tubes in the nuclear power plant, the outer tubes inside the steam generator have more problems on the flow-induced vibration than inner tubes. Many researchers and engineers have used a specified added mass coefficient for a given tube array during the design stage of the steam generator even though the coefficient is not constant for entire tube in cylindrical shell. The aim of this study is to find out the distribution of added mass coefficients for each tube along the radial location. When numbers of tubes inside a cylindrical shell are increased, values of added mass coefficients are also increased. Added mass coefficients at outer tubes are less than those of inner tubes and they are decreased with increasing the gap between the outermost tube and the cylindrical shell. It also turns out when the gap between the outermost tube and the cylindrical shell approaches infinite value, the added mass coefficient converges to an asymptotic value of given tube array in a free fluid field.

Performance Evaluation of Air-to-Air Total Heat Transfer with Rotating Porous Plates (다공의 전열판이 내장된 공기 대 공기 전열교환기의 성능 평가)

  • Lim, T.W.;Cho, D.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The performance of air-to-air heat exchanger has been investigated with rotating porous plates newly developed in this study. With an equal interval of 18 mm, the rotating porous plates are installed inside the heat exchanger where the hot and cold airs enter at opposite ends. When flowing in opposite directions by the separating plate installed in the center of the rotating porous plates, the airs give and receive the heat each other. Dry bulb temperature is set by adjusting heat supply at heater. In order to measure the temperature distribution of the hot air side inside heat exchanger, the thermocouples are inserted between the plates. The first location of thermocouple is 10mm downstream from the inlet of heat exchanger, and succeeding ten locations are aligned at an equal interval of 18mm. From the experiment of air-to-air heat exchanger with the rotating porous plates, the heat transfer rate increased as both air flow rate and RPM of the rotating porous plate increased. It was found that the overall heat transfer coefficient increased with the increase in RPM of porous plate at the conditions of the same air flow rate.

  • PDF

Experimental study on the characteristics of heat transfer for new type aluminum tube (신형 알루미늄관의 열전달 특성에 관한 실험적 연구)

  • 문춘근;윤정인;김재돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2000
  • This study investigated heat transfer characteristics of refrigeration system using new type aluminium heat transfer tube for evaporator of refrigeration and air-conditioning comparing with bare tube. From the result of heat transfer experiment form one phase flow using cooled and hot water, about 20% heat transfer performance is superior in case of same quantity of flow and about 4% heat transfer performance if superior in case of same velocity comparing with bare tube. Casing of two phase flow, heat transfer performance of new type aluminum heat transfer tube shows about 50% superior heat transfer performance comparing with bare tube in the same evaporating pressure when using heat transfer tube as evaporator and shows about 47% increase when expressing performance coefficient as the rate of refrigerating capacity and compressing work. However, it can be known that pressure drop in the heat transfer tube is taken higher value of about 18% in case of new type aluminum heat transfer tube. From the above result, new type aluminum heat transfer tube is excellent comparing with bare heat transfer tube using the existing heat exchanger for refrigerator.

  • PDF

Evaporation Heat Transfer and Pressure Drop of R-22 and R-410A in Small Sized Micro-Fin Tubes (미소 전열촉진관내 R-22 및 R-410A의 증말열전달 및 압력강하 특성 연구)

  • Hwang, Junhyeon;Yun, Lin;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.981-988
    • /
    • 2001
  • Characteristics of evaporation heat transfer in 6.2 and 5.1mm OD micro-fin tubes were investigated in the present study. The data were taken at evaporation temperatures of -5$^{\circ}C$ and 5$^{\circ}C$ and heat fluxes 5kW/$m^2$ to 10kW/$m^2$. Mass flux was consequently maintained at 210, 300 and 410kg/$m^2$s for the 6.2mm OD tube and 465, 500 and 600kg/$m^2$s for the 5.1mm OD tube. The effects of heat flux, mass flux, and outer diameter on the heat transfer coefficient are explored in the present study. The data showed that the evaporation heat transfer coefficient for the 6.2mm OD tube was averagly higher by 16% than that for a 7.0mm OD tube, while the 5.1mm OD tube had approximately 30% higher value than the 6.2mm OD tube.

Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes (마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.