• Title/Summary/Keyword: 전역 탐색

Search Result 394, Processing Time 0.027 seconds

An Adaptive Feature Extraction Method for Effective Classification of Various Fingerprints (다양한 지문의 효과적 분류를 위한 적응적 특징추출방법)

  • Min Jun-Ki;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.262-264
    • /
    • 2006
  • 지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하는 기술로, 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 지문은 개인마다 고유하기 때문에 각 지문마다 전역특징이 다양하게 분포하여 기존의 특징추출방법으로는 분류에 한계가 있다. 본 논문에서는 이를 해결하기 위하여 적응적 특징추출방법을 제안하였다. 이는 융선 방향의 변화량을 계산하여 지문의 전역특징을 포함하는 특징영역을 탐색한 뒤, 특징영역의 블록 방향성 정보로부터 특징벡터를 추출한다. NIST4 지문 데이터에 대한 5클래스 분류실험 결과 제안하는 특징추출방법이 90.25%의 분류성능을 보여 기존 방법보다 효과적임을 확인하였다.

  • PDF

A Fast Motion Estimation Algorithm Based on Multi-Resolution Frame Structure (다 해상도 프레임 구조에 기반한 고속 움직임 추정 기법)

  • Song, Byung-Cheol;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.54-63
    • /
    • 2000
  • We present a multi-resolution block matching algorithm (BMA) for fast motion estimation At the coarsest level, a motion vector (MV) having minimum matching error is chosen via a full search, and a MV with minimum matching error is concurrently found among the MVs of the spatially adjacent blocks Here, to examine the spatial MVs accurately, we propose an efficient method for searching full resolution MV s without MV quantization even at the coarsest level The chosen two MV s are used as the initial search centers at the middle level At the middle level, the local search is performed within much smaller search area around each search center If the method used at the coarsest level is adopted here, the local searches can be done at integer-pel accuracy A MV having minimum matching error is selected within the local search areas, and then the final level search is performed around this initial search center Since the local searches are performed at integer-pel accuracy at the middle level, the local search at the finest level does not take an effect on the overall performance So we can skip the final level search without performance degradation, thereby the search speed increases Simulation results show that in comparison with full search BMA, the proposed BMA without the final level search achieves a speed-up factor over 200 with minor PSNR degradation of 02dB at most, under a normal MPEG2 coding environment Furthermore, our scheme IS also suitable for hardware implementation due to regular data-flow.

  • PDF

Deinterlacing Method for improving Motion Estimator based on multi arithmetic Architecture (다중연산구조기반의 고밀도 성능향상을 위한 움직임추정의 디인터레이싱 방법)

  • Lee, Kang-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • To improved the multi-resolution fast hierarchical motion estimation by using de-interlacing algorithm that is effective in term of both performance and VLSI implementation, is proposed so as to cover large search area field-based as well as frame based image processing in SoC design. In this paper, we have simulated a various picture mode M=2 or M=3. As a results, the proposed algorithm achieved the motion estimation performance PSNR compare with the full search block matching algorithm, the average performance degradation reached to -0.7dB, which did not affect on the subjective quality of reconstructed images at all. And acquiring the more desirable to adopt design SoC for the fast hierarchical motion estimation, we exploit foreground and background search algorithm (FBSA) base on the dual arithmetic processor element(DAPE). It is possible to estimate the large search area motion displacement using a half of number PE in general operation methods. And the proposed architecture of MHME improve the VLSI design hardware through the proposed FBSA structure with DAPE to remove the local memory. The proposed FBSA which use bit array processing in search area can improve structure as like multiple processor array unit(MPAU).

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

Low Computational Adaptive Expanded Block Search Motion Estimation Method (저연산 적응형 확장 블록 탐색 움직임 추정 기법)

  • Choi, Su-Woo;Yun, Jong-Ho;Cho, Tae-Kyung;Choi, Myung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1254-1259
    • /
    • 2010
  • In this paper, Low Computational Adaptive Expanded Block Search Motion Estimation Method is proposed. Proposed method classifies ME blocks as Average Motion Block(AMB) and Local Motion Block(LMB) according to correlation of reference frame. It could reduce the computational complexity with performing Modified Fast Search(MFS). And accuracy of MV is also increased by 4 sub-blocks on LMB and Block Expansion(BE). The experimental results show that the proposed method has better performance that increased 1.8dB than Diamond Search and 0.6dB than Full Search with 7.5 % computation of Full Search. The proposed method could be applied to video compression and Frame Rate Conversion(FRC).

An Efficient Motion Search Algorithm for a Media Processor (미디어 프로세서에 적합한 효율적인 움직임 탐색 알고리즘)

  • Noh Dae-Young;Kim Seang-Hoon;Sohn Chae-Bong;Oh Seoung-Jun;Ahn Chang-Beam
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.434-445
    • /
    • 2004
  • Motion Estimation is an essential module in video encoders based on international standards such as H.263 and MPEG. Many fast motion estimation algorithms have been proposed in order to reduce the computational complexity of a well-known full search algorithms(FS). However, these fast algorithms can not work efficiently in DSP processors recently developed for video processing. To solve for this. we propose an efficient motion estimation scheme optimized in the DSP processor like Philips TM1300. A motion vector predictor is pre-estimated and a small search range is chosen in the proposed scheme using strong motion vector correlation between a current macro block (MB) and its neighboring MB's to reduce computation time. An MPEG-4 SP@L3(Simple Profile at Level 3) encoding system is implemented in Philips TM1300 to verify the effectiveness of the proposed method. In that processor, we can achieve better performance using our method than other conventional ones while keeping visual quality as good as that of the FS.

Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm (자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.301-308
    • /
    • 2018
  • This paper presents an optimal design method of a hybrid structural control system considering multi-hazard. Unlike a typical structural control system in which one system is designed for one specific type of hazard, a simultaneous optimal design method for both active and passive control systems is proposed for the mitigation of seismic and wind induced vibration responses of structures. As a numerical example, an optimal design problem is illustrated for a hybrid mass damper(HMD) and 30 viscous dampers which are installed on a 30 story building structure. In order to solve the optimization problem, a self-adaptive Harmony Search(HS) algorithm is adopted. Harmony Search algorithm is one of the meta-heuristic evolutionary methods for the global optimization, which mimics the human player's tuning process of musical instruments. A self-adaptive, dynamic parameter adjustment algorithm is also utilized for the purpose of broad search and fast convergence. The optimization results shows that the performance and effectiveness of the proposed system is superior with respect to a reference hybrid system in which the active and passive systems are independently optimized.

Fast Full Search Block Matching Algorithm Using The Search Region Subsampling and The Difference of Adjacent Pixels (탐색 영역 부표본화 및 이웃 화소간의 차를 이용한 고속 전역 탐색 블록 정합 알고리듬)

  • Cheong, Won-Sik;Lee, Bub-Ki;Lee, Kyeong-Hwan;Choi, Jung-Hyun;Kim, Kyeong-Kyu;Kim, Duk-Gyoo;Lee, Kuhn-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.102-111
    • /
    • 1999
  • In this paper, we propose a fast full search block matching algorithm using the search region subsampling and the difference of adjacent pixels in current block. In the proposed algorithm, we calculate the lower bound of mean absolute difference (MAD) at each search point using the MAD value of neighbor search point and the difference of adjacent pixels in current block. After that, we perform block matching process only at the search points that need block matching process using the lower bound of MAD at each search point. To calculate the lower bound of MAD at each search point, we need the MAD value of neighbor search point. Therefore, the search points are subsampled at the factor of 4 and the MAD value at the subsampled search points are calculated by the block matching process. And then, the lower bound of MAD at the rest search points are calculated using the MAD value of the neighbor subsampled search point and the difference of adjacent pixels in current block. Finally, we discard the search points that have the lower bound of MAD value exceed the reference MAD which is the minimum MAD value of the MAD values at the subsampled search points and we perform the block matching process only at the search points that need block matching process. By doing so, we can reduce the computation complexity drastically while the motion compensated error performance is kept the same as that of full search block matching algorithm (FSBMA). The experimental results show that the proposed method has a much lower computational complexity than that of FSBMA while the motion compensated error performance of the proposed method is kept same as that of FSBMA.

  • PDF

The effective search range selection algorithm for fast motion estimation (고속 움직임 탐색을 위한 효율적인 탐색영역 선택 알고리듬)

  • Lee, Wonjin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.229-232
    • /
    • 2010
  • 비디오 압축 기법에서 움직임 추정(Motion Estimation)은 매우 중요한 부분을 차지하는데, 그것은 움직임 추정이 화질과 인코딩 시간에 직접적으로 영향을 미치기 때문이다. 가장 기본적인 움직임 추정 기법은 전역 탐색 기법(Full Search)인데, 이는 가장 좋은 화질을 보여주긴 하지만 매우 많은 계산량이 필요하다는 단점이 있다. 따라서 좋은 화질을 유지하면서도 계산량을 낮추기 위한 많은 고속 탐색 알고리즘들이 제안되었다. 이 논문에서는 현재 프레임의 매크로블록과 이전프레임의 매크로블록간의 Sum of Absolute Difference를 이용하여 탐색영역을 변경하는 새로운 예측 방법을 제시한다. 실험결과에 따르면 우리가 제안한 알고리듬은 FS와 비슷한 PSNR을 유지하면서 속도가 크게 향상된 것을 볼 수 있었다.

  • PDF

Fast Block Matching Algorithm based on Multiple Local Search Considering the Deviation of Matching Error between Regions (정합오차의 영역간 편차를 고려한 다중 국소 탐색기반 고속 블록 정합 알고리듬)

  • 조영창;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.9B
    • /
    • pp.1299-1307
    • /
    • 2001
  • 고정된 패턴을 사용하는 기존의 고속 블록기반 움직임 추정법에서는 국소 최소해로 고립될 가능성이 있을 뿐만 아니라, 여러 움직임이 공존하는 움직임 경계에서 정확한 움직임의 추정이 어렵다는 문제점을 가지고 있다. 이러한 문제점을 극복하기 위하여 본 논문에서는 탐색점의 수를 줄이는 동시에 국소 최소해로의 고립을 피하기 위하여 탐색 후보영역을 적용한 다중 국소 탐색법(multiple local search method : MLSM)을 제안한다. 또한, 블록 내의 움직임 영역별 정합오차의 최소편차를 고려하는 새로운 정합함수를 제안함으로써 움직임 경계에서 움직임 벡터추정의 부정확성과 움직임 보상영상에서의 화질저하문제를 개선하고자 한다. 실험결과, 제안한 방법은 기존의 방법에 비해 움직임 경계에서의 추정에서 우수한 결과를 보였으며, PSNR에 대해서도 전역탐색법과 유사한 결과를 얻을 수 있었고, 움직임 보상결과, 움직임 경계부근에서의 향상된 화질을 얻을 수 있었다.

  • PDF