• Title/Summary/Keyword: 전암분석

Search Result 44, Processing Time 0.027 seconds

화강암 분포 지역에서 화학적 풍화변질지수와 풍화등급의 비교

  • 김성욱;이선갑;류호정;김춘식;김인수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.266-271
    • /
    • 2004
  • 지리적으로 이격된 마산과 서부산 지역의 불국사 화강암 분포지에서 정량적인 풍화도를 판별하기 위해 화학적 풍화지수와 등급을 산정하였다. 연구를 위해 채취된 시료에 대해 풍화 생성광물 동정, 전암분석, 산침수에 의한 이온용출 시험을 실시하였으며, 풍화지수와 지형적인 요소와 풍화속도를 고려하여 풍화등급들 산정하였다. 분석 결과 동일한 물리적, 광물학적 특성을 가지고 있으나 풍화에 따라 생성되는 점토광물의 종류와 함량에서 차이를 보여주며, 풍화의 진행 경로과 범위는 매우 상이한 결과를 보여 준다. 이러한 결과는 암석의 풍화가 모암의 조건 외에 지형, 지질구조, 기온, 강수량과 같은 환경적인 요소에 밀접하게 관련되어 있는 것을 의미할 뿐만 아니라 풍화도 산정에서 환경적인 요소에 대한 해석이 반드시 요구된다.

  • PDF

Chemical Weathering Index of Clastic Sedimentary Rocks in Korea (국내 쇄설성 퇴적암의 화학적 풍화지수 고찰)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Kim, Jong-Woo;Kim, Tae-Hyung;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.67-79
    • /
    • 2017
  • Evaluation of the weathering index using the quantitative element composition of rocks is very effective in predicting the degree of weathering of rocks and the secondary weathering residuals. While the process of weathering varies according to the types of rocks, the study of weathering in Korea is concentrated on acidic igneous rocks. This study calculated the weathering indices using whole rock analysis (X-ray fluorescence analysis) of sandstone, mudstone, and shale belonging to clastic sedimentary rocks. The statistical significance of the indices was examined based on the correlation of the calculated weathering indices. Clastic sedimentary rocks showed higher significance of Wp, CIA, CIW and PIA weathering index indicating weathering of feldspar. Chemical Index of alteration (CIA) has the advantage of predicting weathering pathway and clay mineral production, but it is effective to consider chemical index of weathering index (CIW) simultaneously to improve accuracy. In order to reduce uncertainties due to carbonate rocks and to estimate the accurate weathering index, rock samples with high CaO content should be excluded from the evaluation of weathering index.

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

Characterization of Weathering Process in Biotite Gneiss and Granite, Ganghwa Island (강화도 선두리 지역 흑운모 편마암과 화강암에 대한 풍화 특성)

  • Jang Yun-Deuk;Kim Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.39-48
    • /
    • 2006
  • X-ray diffaction and chemical analysis were used for mineralogical characteristics of weathering grade of granite and biotite gneiss. Granite is composed mainly of quartz, albite, and minor K-feldspar and biotite gneiss is biotite, quartz, albite. Illite and kaolinite increased in granite, and vermiculite and halloysite in biotite gneiss as increasing weathering process. The percentages of $Al{2}O_{3}$ increase but that of CaO, $Na_{2}O,\;K_{2}O$ decrease as the weathering process. $Fe_{2}O_{3}$ different from granite and biotite gneiss.

Characterization of Microtextures formed by Chemical Weathering in Crystalline Rocks and Implications for Rock Mechanics (화학적 풍화에 의한 결정질 암석내의 미세조직 발달특징과 암반공학적 의미)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.381-391
    • /
    • 2011
  • Weathering can reduce rock strength and eventually affect the structural stability of a rock mass, which is important in the field of engineering geology. Several methods have been developed to evaluate the degree of weathering, including the chemical weathering index. In this study, we analyzed the weathering degree and characteristics of microtextures and pores in crystalline rocks (gneiss and granites) based on petrographic observations, the chemical weathering index, mineralogy by XRD, microtextural analysis by SEM/EDS, measurements of pore size and surface area by the BET method, and microporosity by X-ray CT. The formation of secondary minerals and microtexture in gneiss and granitic rocks are assumed to be affected by complex processes such as dissolution, precipitation, and fracturing. Hence, it is clear that some chemical weathering indices that are based solely on whole-rock chemistry (e.g., CIA and CWI) are unable to provide reliable assessments of the degree of weathering. Great care is needed to evaluate the degree of chemical weathering, including an understanding of the mineralogy and microtexture of the rock mass, as well as the characteristics of micropores.

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks (청주 화강암의 SHRIMP 저어콘 U-Pb 연대, 지구화학 및 Sr-Nd 동위원소 연구)

  • Cheong, Won-Seok;Kim, Yoon-Sup;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-206
    • /
    • 2011
  • The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.

Petrochemistry and Sr ${\cdot}$ Nd Isotopic Composition of foliated Granite in the Jeoniu Area, Korea (전주지역 엽리상화강암의 암석화학 및 Sr ${\cdot}$ Nd 동위원소 조성)

  • Shin, In-Hyun;Park, Cheon-Young;Jeong, Youn-Joong
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Composition of the major and trace elements, Rb-Sr isochron age Sr-Nd isotope composition were determined for foliated in the Jeonju area, in the middle part of the Ogcheon Fold Bet, Korea. The geochemical characteristics of the Jeonju foliated granite indicate that the granite had been crystallized from a calc-alkaline series, and formed in a volcanic are environment. The isotopic compositions of the Jeonju foliated granite give Rb-Sr whole rock errorchron age of 168.2${\pm}$8 Ma(2${\sigma}$), corresponding to the middle Jurassic period, with the Sr initial ratio of 0.71354${\pm}$0.00031. $^{143}$Nd/$^{144}$Nd ratios, ${\varepsilon}$Nd and ${\varepsilon}$Sr values range from 0.511477 to 0.511744, -15.4${\sim}$-21.2, and +108.8${\sim}$+l42.6, respectively. Model ages were caculated to be 1.82${\sim}$2.89Ga. The isotopic data of Jeonju foliated granite indicate that the source material may have been derived from partial melting of continental crust materials.

  • PDF

Study on DNA Content and Ki-67 Antibody Expression by Means of Image Analyzer for the Benign and Malignant Lesions of the Larynx (후두 편평상피의 전암성 및 악성병변에서 화상분석기를 이용한 DNA 배수성검사와 Ki-67 항체 양성세포의 분석에 관한 연구)

  • 주형로;이선희;최종욱;김인선
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1993.05a
    • /
    • pp.89-89
    • /
    • 1993
  • The laryngeal epithelial cell kinetics of 26 laryngeal lesions(invasive squamous cell carcinoma 14, epithelial hyperplasia 5, laryngeal nodule 7) were studied by immunehistochemical analysis with the monoclonal antibody Ki-67, which reacts with nuclear antigen in proliferating cells using paraffin embedded tissue. For DNA analysis, touch implint with fresh biopsy specimens were stained with feulgen and analyzed by image analyzer in 22 cases. 1) The proportion of Ki-67-positive cells were 32.65$\pm$ 11.59% in invasive squamous cell ca, 20.14$\pm$3.38% in epithelial hyperplasia lesion and 11.66$\pm$3.02% in laryngeal nodule. 2) DNA aneuploidy was found in 7 cases of 10(70%) invasive squamous cell carcinomas, 2 cases of 5(40%) epithelial hyperplasia lesions and all cases of laryngeal 3) Proliferation index(S phase+G2/M phase) show 23.42$\pm$11.33% in squamous cell carcinoma, 13.09$\pm$ 10.90% in epithelial hyperplasia lesion and 4.50$\pm$1.19% in laryngeal nodule. As the results, measuring the DNA content from touch imprint method together positivity of Ki-67 antibody from the microtissue during the laryngeal microscopic surgery, cell kinetics can be assessed as an effort of deciding the prognosis and provide a key to the management of precancerous lesions.

  • PDF

SWIR Application for the Identification of High-Grade Limestones from the Upper Pungchon Formation (풍촌층 상부 층준의 고품위 석회석 동정을 위한 SWIR 적용)

  • Kim, Yong-Hwi;Kim, Gyoo Bo;Choi, Seon-Gyu;Kim, Chang Seong
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.335-347
    • /
    • 2016
  • The mineralogical and geochemical characteristics of diverse carbonate rocks can be investigated by using VNIRSWIR(visible near infrared-short wavelength infrared) spectroscopic analysis as a rapid, nondestructive, and inexpensive tool. Comparing whole rock analysis to VNIR-SWIR spectroscopic analysis, the analytical method was investigated to estimate CaO contents, mud impurity, and whiteness of carbonate rocks involved in high-grade limestones in the field. We classify typical carbonate rocks in the upper Pungchon Formation in high-grade limestone mine area such as the Gangweon, Chungmu and Baegun mine in the Jeongseon area. The results show that powdered specimen has much higher reflectance than cutted specimen between the same sample. Whiteness is highly correlated with reflectance(0.99) for powdered specimen. The absorption of mineral mixtures shifts in position as a result of the mass ratio of calcite and dolomite in the Chungmu mine by changing to 75:25, 50:50, and 25:75. The absorption peak position in carbonate mixtures is highly correlated with CaO contents(0.98~0.99). Based on color system, the carbonate rocks are grouped into (milky) white, light grey, light brown, grey, and dark grey. The absorption peak position shifts from 2340 nm to 2320 nm as CaO contents decrease from 55.86 wt.% to 29.71 wt.%. We confirmed that absorption peak position shifts depending on the amount of Ca, which is bonded to $CO{_3}^{-2}$, Mg, and Fe contents replacing Ca. This result suggests that CaO contents in carbonate rocks can be considered to quantitative analysis in the field by spectroscopic analysis.