• Title/Summary/Keyword: 전술 무인항공기

Search Result 6, Processing Time 0.017 seconds

Discrete Noise Prediction of Small-Scale Propeller for a Tactical Unmanned Aerial Vehicle (소형 전술급 무인항공기 프로펠러의 이산소음 수치해석)

  • Ryu, Ki-Wahn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.790-798
    • /
    • 2018
  • Discrete noise signals from a small scale tactical unmanned aerial vehicle(UAV) propeller were predicted numerically using time domain approach. Two-bladed 29 inch propeller in diameter and 150 kgf in gross weight were used for main parameters of the UAV based on the actual size of the similar scale vehicle. Panel method and Farassat formula A1 were adopted for aerodynamic and aeroacoustic analysis respectively. Time domain signals of both thickness and loading noises were transformed into frequency domain to analyze the discrete noise characteristics. Directivity pattern in a plane perpendicular to the rotating disc plane and attenuation of noise intensity according to double distance were also presented.

A Searching Technique of the Weak Connectivity Boundary using Small Unmanned Aerial Vehicle in Wireless Tactical Data Networks (무선 전술 데이터 네트워크에서 소형 무안항공기를 이용한 연결성 약화 지역 탐색 기법)

  • Li, Jin;Song, Ju-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.89-96
    • /
    • 2012
  • Since tactical robots are going to be grown and tactical data communications will be more network-centric, the reliability of wireless tactical data networks is going to be very important in the future. However, the connectivity of such wireless tactical data networks can be extremely uncertain in practical circumstances. In this paper, we propose a searching technique to find out the weak boundary area of the network connectivity using a small UAV(unmanned aerial vehicle) which has a simple polling access function to wireless nodes on the ground in wireless tactical data networks. The UA V calculates the network topology of the wireless tactical data networks and coverts it to the Lapalcian matrix. In the proposed algorithm, we iteratively search the eigenvalues and find a minimum cut in the network resulting in finding the weak boundary of the connectivity for the wireless tactical data networks. If a UAV works as a relay nodes for the weak area, we evaluate that the throughput performance of the proposed algorithm outperforms star connection method and MST(minimum Spanning Tree) connection method. The proposed algorithm can be applied for recovering the connectivity of wireless tactical data networks.

Development of Real-Time Vision Aided Navigation Using EO/IR Image Information of Tactical Unmanned Aerial System in GPS Denied Environment (GPS 취약 환경에서 전술급 무인항공기의 주/야간 영상정보를 기반으로 한 실시간 비행체 위치 보정 시스템 개발)

  • Choi, SeungKie;Cho, ShinJe;Kang, SeungMo;Lee, KilTae;Lee, WonKeun;Jeong, GilSun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.401-410
    • /
    • 2020
  • In this study, a real-time Tactical UAS position compensation system based on image information developed to compensate for the weakness of location navigation information during GPS signal interference and jamming / spoofing attack is described. The Tactical UAS (KUS-FT) is capable of automatic flight by switching the mode from GPS/INS integrated navigation to DR/AHRS when GPS signal is lost. However, in the case of location navigation, errors accumulate over time due to dead reckoning (DR) using airspeed and azimuth which causes problems such as UAS positioning and data link antenna tracking. To minimize the accumulation of position error, based on the target data of specific region through image sensor, we developed a system that calculates the position using the UAS attitude, EO/IR (Electric Optic/Infra-Red) azimuth and elevation and numerical map data and corrects the calculated position in real-time. In addition, function and performance of the image information based real-time UAS position compensation system has been verified by ground test using GPS simulator and flight test in DR mode.

Development of Air to Air Mission Tactics for Manned-Unmanned Aerial Vehicles Teaming (공대공 교전을 위한 유무인항공기 협업 전술 개발)

  • Hwang, Seong-In;Yang, Kwang-Jin;Oh, Jihyun;Seol, Hyeonju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • UAVs have been deployed various missions such as deception, reconnaissance and attack since they have been applied in battlefield and achieved missions successfully instead of man. In the past, it is impossible for UAVs to conduct autonomous missions or cooperative mission between manned aircraft due to the limitation of the technology. However, theses missions are possible owing to the advance in communication and AI Technology. In this research, we identified the possible cooperative missions between manned and unmanned team based on air-to-air mission. We studied cooperative manned and unmanned tactics about fighter sweep mission which is the core and basic operation among various air-to-air missions. We also developed cooperative tactics of manned and unmanned team by classifying nonstealth and stealth confrontational tactics. Hereafter, we verified the validity of the suggested tactics using computer simulations.

Airworthiness Case Study for the Tactical UAV's Flight Control System (전술급 무인항공기 비행제어시스템의 감항인증 사례연구)

  • Choi, Seung Kie;Moon, Jung Ho;Ko, Joon Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • This paper presents the case study of the airworthiness certification for the flight control system of tactical UAV. Airworthiness regulations for flight characteristics and design and construction based on the STANAG 4671 are selected, and safety assessment is performed. Stall protection on wing level and turning flight criteria, and flap interconnection system failures were analyzed and applied to the flight control system design. The Hardware-in-the-loop simulation including math model, integrated system verification and validation test and failure mode and effects test were also performed and they are used to validate the means of compliance of the proposed airworthiness.

On the Use of SysML Models in the Conceptual Design of Unmanned Aerial Vehicles (무인항공기체계의 개념설계에서 SysML 모델의 활용에 관한 연구)

  • Kim, Young-Min;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.206-216
    • /
    • 2012
  • Today's war fields can be characterized by net-centric wars where a variety of independent weapon systems are operated in connection with each other via networks. As such, weapon systems become dramatically advanced in terms of complexity, functionality, precision and so on. It is then obvious that the defense R&D of those requires systematic and efficient development tools enabling the effective management of the complexity, budget/cost, development time, and risk all together. One viable approach is known to be the development methods based on systems engineering, which is already proved to successful in U.S. In this paper, a systems engineering approach is studied to be used in the conceptual design of advanced weapon systems. The approach is utilizing some graphical models in the design phase. As a target system, an unmanned aerial vehicle system is considered and the standard SysML is also used as a modeling language to create models. The generated models have several known merits such as ease of understanding and communication. The interrelationships between the models and the design artifacts are identified, which should be useful in the generation of some design documents that are required in the defense R&D. The result reported here could be utilized in the further study that can eventually lead to a full-scale model-based systems engineering method.