• 제목/요약/키워드: 전산 유체 해석

검색결과 2,589건 처리시간 0.027초

탄성 플랩을 갖는 2차원 날개 단면 공력 특성 전산해석 (Numerical Analysis of Aerodynamics Characteristics of Two Dimensional Airfoil Section with Elastic Flap)

  • 원창희;이주용;이승수
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제2권1호
    • /
    • pp.39-46
    • /
    • 2014
  • 이 연구에서는 탄성 플랩이 뒷전에 장착된 2차원 날개 단면의 공력 특성을 전산 해석하였다. EDISON_CFD는 날개 주위의 비압축성 난류 유동을 시뮬레이션 하기 위해 이용되었으며, MIDAS_IT는 전산 해석 결과로 얻어진 압력 하중 하에서 탄성 플랩의 변위를 구조해석 하기 위해 사용되었다. EDISON_CFD와 MIDAS_IT의 반복 계산 절차를 이용하여, 플랩의 변위가 수렴되면 해석을 종료하여, 날개 단면에 작용하는 공력을 분석하였다. 양항비의 추정 결과 일정 받음각 이내에서 플랩의 유리한 효과가 나타날 것으로 예상된다.

전산해석을 통한 고속철도용 저소음 저저항 팬터그래프 형상설계 연구 (RESEARCH OF HIGH-SPEED TRAIN PANTOGRAPH SHAPE DESIGN FOR NOISE AND DRAG REDUCTION THROUGH COMPUTATIONAL ANALYSIS)

  • 정성민;이상아;노주현;김규홍
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.67-72
    • /
    • 2015
  • In this paper, study of high speed train pantograph arm shape and panhead cross-section for aerodynamic drag and noise reduction is performed. In previous research, it is known that knee of pantograph arm and panhead of pantogpraph are main sources of noise from high speed train pantograph. By numerical simulation using full scale pantograph model, pantograph arm and panhead optimization are performed. As a result, drag and noise are reduced at both studies about high speed pantograph.

비틀림각에 따른 HWAT의 공력특성 전산해석 (CFD ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF HWAT BASED ON THE DIFFERENT TWIST ANGLE USING CFD)

  • 이명수;유성수;황도연;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.19-26
    • /
    • 2009
  • The objective of this study is to investigate aerodynamic characteristics of a Horizontal-axis wind turbines(HAWT), using CFD method with a commercial code STAR-CCM+ version 3.06. To verify the reliability of the computations, the CFD results are compared with the experimental ones of the National Renewable Energy Laboratory(NREL) Phase Ⅵ HAWT. For the comparison and examination of aerodynamic characteristics, the existent shape with a predesigned twist angle was replaced by the one with one-dimensional linear twist angle. In this study, the pressure contour and stream line around the blade were analyzed as main focus. Through this study the more efficient shape of airfoil is suggested with consideration of manufacturing cost.

  • PDF

초월공동 수중운동체를 위한 캐비테이터 전산 유동 해석 (SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR)

  • 박수일;박원규;정철민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.188-192
    • /
    • 2009
  • A massive cavity is generated behind the underwater vehicles, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. when a underwater vehicle moves at very high speed in the underwater. At this point it makes supercavitating flow and the nose, ie., the cavitator is very important fator at the vehicle since it should be surrounded by the cavity. The present work has focused on the simulation of cavitation flow using the new cavitator. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained.

  • PDF

프로펠러형 팬의 날개형상에 따른 전산 해석적 연구 (Computational study on flows by propeller fans with different blades)

  • 이정민;김재원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.163-169
    • /
    • 2000
  • Design and developments of a propeller fan for a cooling tower have been accomplished by both numerical prediction of performance and experimental validation with a wind tunnel, Main interest lies on blade geometry of a fan for optimal design of aerodynamic performance. The present methodology for numerical estimation is commercial program, Fine/Turbo, which gives us engineering information such as flow details near the blades and flow rate of it. The numerical results are compared with precise experimental output and show good agreement. Also new proposed model of a blade with the program show improved performance relative to present running model in market.

  • PDF

전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석 (Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane)

  • 유혜란;정영래;박원규
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.

지하주차장 내부 일산화탄소 가스 분포의 전산 해석적 평가 (Numerical Evaluation of CO Gas Distribution in Underground Parking Lot)

  • 김재원;함경아
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.33-42
    • /
    • 2002
  • Numerical estimation for concentration of mono-carbon oxygen (CO) gas inside an underground parking lot with auxiliary jet fans for enhancement of ventilation is carried out by using a commercial program. Main interest lies on the diagnosis of the present ventilation system including position and selection of auxiliarly fans in addition to main suppliers and exhausts. Details of both flows and concentration of CO gas that is most important component among car exhaust gases are illustrated in this investigation and those are presented for engineering construction of an underground parking pool. Prediction data of computational work is also validated by real measurements of concentration of CO gas.

멀티그리드 기법을 이용한 원심압축기 임펠러의 3차원 회전유동 전산해석에 대한 검증 (On Validation to the Three-Dimensional Multigrid Calculations of Rotating Impeller Flows in Centrifugal Compressors)

  • 장규호;문영준
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.30-36
    • /
    • 1998
  • The three dimensional Navier-Stokes equations in rotational coordinate are solved using a multigrid algorithm for the calculations of turbulent flows in centrifugal compressor impellers. Some numerical studies are made in applying the multigrid algorithm for the turbulent flow calculations with the standard κ-ε equations. The present method is used to calculate the flow fields of Mizuki's B-type and Niigata Ms. 350 centrifugal compressor impellers. Fast convergent steady-state solutions are carefully examined, comparing the static pressure distributions along the impeller flow passage and also in the diffuser with experimental data. Performance of a centrifugal compressor system is also numerically validated by comparing the performances of the impeller and the diffuser individually.

  • PDF

서로 다른 캐비테이션 모델을 이용한 실린더 주위의 캐비테이션 유동현상 전산해석 (NUMERICAL ANALYSIS OF CAVITATING FLOW PAST CYLINDER WITH THREE DIFFERENT CAVITATION MODELS)

  • 김승윤;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.60-66
    • /
    • 2011
  • Engineering interests of submerged bodies and turbomachinery has led researchers to study various cavitation models for decades. The governing equations used for the present work are the two-phase Navier-Stokes equations with homogeneous mixture model. The solver employed on implicit dual time preconditioning algorithm in curvilinear coordinates. Three different cavitation models were applied to two axisymmetric cylinders and compared with experiments. It is concluded that the Merkle's new cavitation model has successfully accounted for cavitating flows and well captured the re-entrant jet phenomenon over the 0-caliber cylinder.

항공기 무장투하 안전성 검증을 위한 전산해석 (NUMERICAL SIMULATION FOR AIRCRAFT STORE SEPARATION VALIDATION)

  • 윤용현;정형석;이상현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.157-161
    • /
    • 2007
  • The prediction of the safe separation of the external stores carried on military aircraft is an important task in the aerodynamic design area having the objective to define the operational, release envelopes. The major concern of this study is only safe jettison problem with ejections. This work consists of concept and some results for external store configurations. A Computational Fluid Dynamics technique is applied to calculate the aerodynamic forces. The FLUENT with an implicit Euler solver is used for the present simulations. The computational results are validated against the experimental data.

  • PDF