• 제목/요약/키워드: 전산 열해석

검색결과 545건 처리시간 0.03초

차세대 원자로 정지냉각계통의 냉각 성능에 대한 연구 (A Study of Cooldown Performance of Shutdown Cooling System of Korea Next Generation Reactor)

  • 유성연;이상섭
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.525-532
    • /
    • 1999
  • 한국형 차세대 원자로는 ABB-CE사의 System 80+의 설계개념을 근간으로 하여 표준화된 원자로의 계통설계를 추진하고 있다. 본 연구에서는 차세대 원자로 정지냉각계통의 운전시 요구되는 인허가 요건등제반 조건을 충족시킬 수 있는지를 해석하였다. 또한 운전시 필요한 열교환기의 유효면적과 원자로 기기냉각수 유량등 기본적인 설계자료를 산출하여 차후 차세대 원자로 정지냉각계통의 상세설계 업부를 수행하는데 필요한 기초자료를 제시하여 핵증기공급계통 (NSSS)의 기술개발을 이루는데 목적이있다. 차세대 원자로는 울진 3, 4호기 열출력 2.825MWth 에 비해 열출력이 4,000MWth 로 증가되어 정지냉각계통의 관련서례자료를 새로 산출해야하므로 정지냉각계통의 냉각능력을 평가하는 KDESCENT 전산코드를 이용하여 원자로 노심의 잔열과 정지냉각계통의 현열을 제거할 수 있는 최소 유량을 제시하였으며 주요 구성기기인 열교환기, 펌프, 밸브 및 기타 기기의 기능 및 정지냉각계통의 운전절차를 고찰하였다.

  • PDF

스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가 (Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle)

  • 박준수;송민섭;김종수;김인용;양준석
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.100-100
    • /
    • 2009
  • 본 논문에서는 원자력발전소 1차 계통의 스테인리스강 저합금강 이종금속용접부 및 스테인리스강 동종용접부의 잔류응력을 평가하고 스테인리스강 용접부의 응력부식균열 민감성에 대해 고찰하였다. 노즐 안전단의 이종금속용접부 및 안전단 배관의 동종용접부 제작 및 소재가공에 의행 생성되는 잔류응력을 예측하기 위해 열 탄소성 유한요소법 수치해석을 수행하였으며, 용접공정과 함께 표면의 잔류응력에 기여하는 절삭 및 연삭가공과 소재의 담금질 공정을 열 탄소성적으로 모사하였다. 전산해석 결과, 스테인리스주강의 담금질 잔류응력은 무시할 수 없는 상당한 크기이므로 배관 용접잔류응력 평가 시 소재의 담금질 효과를 고려해야 할 것으로 판단된다. 이종금속 용접과 동종금속 용접공정이 보수용접 없이 정상적인 절차(내면에서 외면으로 적층)로 완성된다면, 냉각재 환경에 노출되는 용접부 내면의 잔류응력은 재료의 응력부식균열 민감성에 영향을 주지 않을 것으로 판단된다. 한편, 안전단 배관 동종용접부의 연삭가공에 의해 내면의 잔류응력이 크게 상승하는 것으로 예측되었으므로, 내면의 연삭가공 이후 표면잔류응력 완화처리(예, 버핑)가 필요하다.

  • PDF

수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (I) (Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (I))

  • 이진학;오상호;박진순;이광수;이상열
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.67-72
    • /
    • 2013
  • In this study, numerical analyses that considered the dynamic interaction effects between the flow and a turbine were carried out to investigate the power output performance of an H-type Darrieus turbine rotor, which is one of the representative lifting-type vertical-axis tidal-current turbines. For this purpose, a commercial CFD code, Star-CCM+, was utilized for an example three-bladed turbine with a rotor diameter of 3.5 m, a solidity of 0.13, and the blade shape of an NACA0020 airfoil, and the optimal tip speed ratio (TSR) and corresponding maximum power coefficient were evaluated through exhaustive simulations with different sets of flow speed and external torque conditions. The optimal TSR and maximum power coefficient were found to be approximately 1.84 and 48%, respectively. The torque and angular velocity pulsations were also investigated, and it was found that the pulsation ratios for the torque and angular velocity were gradually increased and decreased with an increase in TSR, respectively.

수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (II) (Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (II))

  • 이진학;오상호;박진순;이광수;이상열
    • 한국해양공학회지
    • /
    • 제27권3호
    • /
    • pp.73-78
    • /
    • 2013
  • CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.

초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구 (Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect)

  • 서준혁;권길성;최주찬;백제현
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.153-159
    • /
    • 2015
  • 본 연구에서는 MEMS기술을 적용한 2W급 초소형 가스터빈엔진의 개발과 실제 연소 환경에서의 발전 가능성을 해석적, 실험적으로 입증하였다. 초소형 가스터빈엔진은 터보차저, 연소기, 발전기로 이루어져 있다. 터보차저는 각각 직경 10mm와 9mm의 MEMS 공정 압축기와 터빈으로 구성되어 있으며 발전코일 또한 MEMS공정으로 설계되었다. 제작된 압축기와 터빈은 정밀 기계 가공된 축과 공기 베어링으로 지지되고 회전하며, 회전축 끝단에 영구자석을 설치하여 발전을 하게 된다. 공기 베어링과 압축기를 통한 냉각 효과를 해석하여 연소기에서 발생한 열을 충분히 차단할 수 있는 것으로 분석되었고, 이를 실험을 통해 검증하였다.

쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구 (A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape)

  • 손상호;신정헌;김정철;윤석호;이공훈
    • 설비공학논문집
    • /
    • 제30권4호
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.

하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구 (Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles)

  • 권화빈;박희성
    • 대한기계학회논문집B
    • /
    • 제40권6호
    • /
    • pp.403-408
    • /
    • 2016
  • 리튬 이온 배터리는 높은 에너지 밀도와 안정적인 충전/방전 특성을 내재하고 있어 하이드리드 및 전기자동차에 보편적으로 사용된다. 리튬 이온 배터리의 효율은 배터리 자체의 온도 특성에 직접적인 영향을 받으므로, 열을 효율적으로 냉각하는 기술이 요구된다. 본 논문에서는 수냉식 배터리 냉각 시스템의 냉각 성능과 펌프 소모동력에 관한 전산유체해석을 수행하였다. 이를 위해 배터리 셀의 냉각수 유량 및 냉각 채널의 특성에 따른 냉각 성능을 수치적으로 예측하였다. 이를 바탕으로 250개 배터리 셀을 기준으로 유량 및 차압에 의한 소모동력을 계산하였다. 이러한 연구는 차세대 하이브리드 및 전기자동차의 시간에 따른 배터리의 온도 변화 및 충/방전 효율 최적화 기술에 적용할 수 있는 기초 연구로 활용될 수 있을 것으로 기대된다.

히트싱크의 자연대류 열유동 특성 분석 (Investigation of Natural Convective Heat Flow Characteristics of Heat Sink)

  • 정태성;강환국
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.27-33
    • /
    • 2013
  • 제품의 성능 및 신뢰성 향상을 위하여 효과적이고, 적정한 방열장치의 중요성이 지속적으로 부각되고 있다. 현재 가장 널리 쓰이는 방열장치는 알루미늄 압출식 평행핀 형상의 히트싱크(heat sink)로 이의 설계를 위해서는 방열량과 최대 허용온도 등에 대한 목표가 결정되어야 하며, 사용 환경 및 설치 방법에 따른 열전달 계수의 예측이 이루어져야 한다. 본 연구에서는 히트싱크의 베이스가 수직, 수평상태를 유지함에 따라 나타나는 핀 주변의 자연대류 유동 특성을 전산모사 해석을 통해 고찰하였다. 또한, 일반적인 자연대류형 히트싱크를 대상으로 수평 및 수직상태에서의 열적 성능 실험을 수행하였으며, 기존의 연구결과와 비교함으로써 설치방향이 히트싱크 방열성능에 미치는 영향에 대하여 분석하였다. 실험결과 수평상태의 경우는 수직인 경우에 비하여 약 10~15% 열전달 계수의 감소가 발생하였다.

자동차 워셔액 가열시스템의 온도 변화 특성에 관한 연구 (A Study on the Characteristics of Time Dependent Temperature Change in a Automobile Washer Heater)

  • 하지수;이선봉;이동권
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1040-1044
    • /
    • 2013
  • 본 논문은 추운 겨울 자동차 앞면 유리에 생기는 성에를 제거하는 워셔액 가열시스템의 가열과 분사에 따른 온도변화 특성에 관한 연구이다. 지금까지 다른 연구에서는 워셔액 가열시스템에 대한 온도 변화 특성을 간단한 수학적 모델링을 통하여 분석하였으나 본 연구에서는 워셔액 가열시스템의 보다 더 최적화된 제어시스템 설계를 위해 워셔액 가열시스템의 시간에 따른 열유동 특성 변화를 전산유체해석(CFD)을 통해 파악하기로 한다. 이를 위해서 워셔액 가열시스템의 주요 부분인 히터와 워셔액에 대한 비정상상태 해석을 수행하고 워셔액 전체의 온도 변화 특성을 분석하였다. 이를 토대로 워셔액의 가열시간과 분사시 온도 특성을 파악하여 워셔액 가열시스템의 최적설계의 기본자료로 활용하도록 하였다.

전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석 (Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles)

  • 오의영;민동석;한지윤;정승호;강태선
    • 한국가스학회지
    • /
    • 제23권1호
    • /
    • pp.54-61
    • /
    • 2019
  • 휴대용 전자기기의 시장이 성장함에 따라서 Lithium Ion Battery(LIB)의 수요 또한 증가하고 있다. LIB는 다른 2차 전지에 비해 높은 효율성을 보이지만 열 폭주(Thermal runaway)로 인한 폭발/화재의 위험성이 있다. 특히나 대용량 LIB cell을 탑재한 Electric Vehicle(EV)의 경우 화재로 발생하는 대량의 독성 가스로 인한 위험성 또한 존재한다. 따라서 사고 피해를 최소화하기 위한 EV 화재로 발생하는 독성 가스의 위험성 분석이 필요하다. 이 연구에서는 EV의 화재로 발생하는 독성 가스의 유동을 전산유체역학(Computational Fluid Dynamic; CFD)을 이용하여 해석하였다. 문헌 조사 결과와 국내 EV 자료를 기반으로 시나리오를 설정하여 시나리오 발생 경과시간에 따른 독성 가스의 확산을 수치 해석하여 위험성에 대하여 분석 하였다. 이 연구는 EV 화재로 인한 독성 가스의 위험성을 분석하여 사고 발생에 의한 인명, 재산피해를 최소화하는데 의의를 가진다.