• Title/Summary/Keyword: 전산유체역학 분석

Search Result 384, Processing Time 0.025 seconds

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation (CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석)

  • SIM, CHANG-HWI;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

Numerical Study on Aerodynamic Lift on Windshield Wiper of High-Speed Passenger Vehicles (자동차 고속 주행시 와이퍼 부상현상에 대한 수치해석 연구)

  • Lee, Seung-Ho;Lee, Sung-Won;Hur, Nahm-Keon;Choi, Woo-Nyoung;Sul, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • In the present study, a three-dimensional CFD simulation on aerodynamic lift acting on windshield wiper blades was performed to improve the wiping performance of a vehicle moving at a high speed. To predict the reliable flow characteristics around the windshield wiper system, the computational domain included the full vehicle model with detailed geometry of wiper blades in the wind tunnel. From the numerical results, the drag and lift coefficients of wiper blade were obtained for the performance of windshield wiper. With this aerodynamic characteristics of windshield wiper, the effects of wiping angles and hood tip angle on the wiping performance of the windshield wiper were evaluated.

Influence of Cardiac Contraction and its Phase Angle with Coronary Blood flow on Atherosclerosis of Coronary Artery (심장의 수축운동과 관상동맥 혈류와의 위상차가 관상동맥 혈관의 동맥경화 민감성에 미치는 영향)

  • 김민철;이종선;김찬중;권혁문
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.437-449
    • /
    • 2002
  • Coronary arteries are subjected to very different flow conditions compared to other arteries in systemic blood circulation. We Performed a computational fluid dynamic research to investigate influence of such flow conditions in coronary arteries on development and progress of atherosclerosis in the same. The results showed big differences in the flow field of the coronary artery compared to the abdominal and femoral arteries. The coronary artery showed higher wall shear stresses due to the small vessel diameter. On the other hand, it showed only one vortex distal to the stenosis throat during a whole pulse cycle. However. several vortices were observed in the abdominal and femoral arteries in both proximal and distal sides of the stenosis throat The wall shear stresses and extent of recirculation area were increased with impedance phase angle increasing toward more negative values. Therefore, cardiac contraction and the negative impedance phase angle as large as -110。 may induce a flow field that accelerates atherosclerosis.

백색 LED증착용 MOCVD장치에서 유도가열을 이용한 기판의 온도 균일도 향상에 관한 연구

  • Hong, Gwang-Gi;Yang, Won-Gyun;Jeon, Yeong-Saeng;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.463-463
    • /
    • 2010
  • 고휘도 고효율 백색 LED (lighting emitting diode)가 차세대 조명광원으로 급부상하고 있다. 백색 LED를 생산하기 위한 공정에서 MOCVD (유기금속화학증착)장비를 이용한 Epi wafer공정은 에피층과 기판의 격자상수 차이와 열팽창계수차이로 인하여 생성되는 에피결함의 제거를 위하여 기판과 GaN 박막층 사이에 완충작용을 해줄 수 있는 버퍼층 (Buffer layer)을 만들고 그 위에 InGaN/GaN MQW (Multi Quantum Well)공정을 하여 고휘도 고효율 백색 LED를 구현할 수 있다. 이 공정에서 기판의 온도가 불균일해지면 wafer 파장 균일도가 나빠지므로 백색 LED의 yield가 떨어진다. 균일한 기판 온도를 갖기 위한 조건으로 기판과 induction heater의 간격, 가스의 흐름, 기판의 회전, 유도가열코일의 디자인 등이 장비의 설계 요소이다. 코일에 교류전류를 흘려주면 이 코일 안 또는 근처에 있는 도전체에 와전류가 유도되어 가열되는 유도가열 방식은 가열 효율이 높아 경제적이고, 온도에 대한 신속한 응답성으로 인하여 열 손실을 줄일 수 있으며, 출력 온도 제어의 용이성 및 배출 가스 등의 오염 없다는 장점이 있다. 본 연구에서는 유도가열방식의 induction heater를 이용하여 회전에 의한 기판의 온도 균일도 측정을 하였다. 기초 실험으로 저항 가열 히터를 통하여 대류에 의한 온도 균일도를 평가하였다. 그 결과 gap이 3 mm일 때, 평균 온도 $166.5^{\circ}C$ 에서 불균일도 6.5 %를 얻었으며 이를 바탕으로 induction heater와 graphite susceptor의 간격이 3 mm일 때, 회전에 의한 온도 균일도를 측정을 하였다. 가열원은 induction heater (viewtong, VT-180C2)를 사용하였고, 가열된 graphite 표면의 온도를 2차원적으로 평가하기 위하여 적외선 열화상 카메라(Fluke, Ti-10)을 이용하여 온도를 측정하였다. 기판을 회전하면서 표면 온도의 평균과 표준 편차를 측정한 결과 2.5 RPM일 때 평균온도 $163^{\circ}C$ 에서 가장 좋은 5.5 %의 불균일도를 확인할 수 있었고, 이를 상용화 전산 유체 역학 코드인 CFD-ACE+의 모델링 결과와 비교 분석 하였다.

  • PDF

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

Analysis of High Sea-worthiness Offshore Wind Turbine (고 내항성 해상풍력 발전기 해석)

  • Ahn, Gyu-Jung;Koo, Bon-Guk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Research was conducted to analyze and improve the kinetic performance of offshore wind power generators. The shape used in this study was taken with reference to the previous paper, and the size of the repair area was designed at 80%, 60%, 40%, and 20%, respectively, and the exercise performance was confirmed accordingly. The sea state was calculated in Sea State 4, 5, and 6. In the calculation process, the calculation was performed using commercial computational hydrodynamics (ANSYS) and AQUA. In the case of overall exercise performance, it was confirmed that the smaller the size of the repair area, the smaller the exercise such as heave, roll, and pitch. However, it was confirmed that in the case of a shape in which the size of the repair area was rapidly reduced, there may be cases in which the restoration performance was not satisfied when the restoration calculation was performed. In addition, it was confirmed that there may be an appropriate repair surface depending on the sea condition.

Numerical Simulation for Improvement in Resistance Performance by Bulb Retrofit under Optimal Trim Conditions (최적 트림 조건하에서 벌브개조를 통한 선박저항성능 개선 연구)

  • Park, Hyunsuk;Seo, Dae-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1070-1077
    • /
    • 2022
  • The International Maritime Organization has recently strengthened its marine environment regulations. The energy efficiency index has long been an important indicator of ship design, and now, energy efficiency is being enforced for existing ships as well as new ships. To increase the energy efficiency of existing ships, methods such as retrofitting the bow bulb, selecting an optimized trim during ship operation, and installing an energy saving device have been applied. In this study, the ship resistance was numerically simulated using computational fluid dynamics (CFD) under various bow and stern trim conditions. In addition, the bulb was redesigned to further improve the resistance performance under the selected trim conditions. When the improved bulb was applied, the effective horse power increased by approximately 5%. It is, however, necessary to verify whether the redesigned bulb can reduce ship resistance in waves.

Noise Protection Roof: Partial Opening Effect for Noise Reduction (철도용 터널형 방음벽 개발연구: 설계 방향)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.522-532
    • /
    • 2015
  • In the present study, a tunnel type soundproof wall with partial opening is proposed to reduce the environmental noise caused by railway vehicles traveling on bridges, which affects residents of high-rise apartment buildings; the study also attempts to minimize load due to wind and the weight of the wall. Applying the principles of computational fluid dynamics and structural mechanics, and the ray tracing method, a reduction in noise as well as of the overall weight of the soundproof walls is estimated. Analysis results show that the proposed soundproof wall with a partial opening weighs less, while reducing the wind loading by up to 30%. To prevent direct propagation of sound through openings in the wall, an acoustic louver, which is a type of silencer, could be considered for the opening. In order to achieve a similar noise effect with existing insulation material, the fluid flow and the insulation effect of the acoustic louver are analyzed. As the considered opening is in the range of 30~40% of the total length of the soundproof wall, the noise effect and wind load are reduced by 10dB and 25% respectively. Consequently, opening some part of tunnel type soundproof walls and installing louvers on the wall openings can have the effects of weight-reduction and reduced wind load. If a partial opening is applied with proper sound material application, a gain of an additional 5~10dB of noise reduction can be achieved.

A Study on the Effects of Wind Fence on the Dispersion of the Particles Emitted from the Construction Site Using GIS and a CFD Model (GIS와 CFD 모델을 활용한 건설 현장 방풍벽 설치가 비산 먼지 확산에 미치는 영향 연구)

  • Kim, Dong-Ju;Wang, Jang-Woon;Park, Soo-Jin;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.763-775
    • /
    • 2018
  • In this study, the effects of wind fences on the dispersion of the particles emitted from a constructing site located in the building-congested area in Busan, Korea, using geographic information system (GIS) and a computational fluid dynamics (CFD) model. We averaged the wind speeds observed for 10 years at the Busan automated synoptic observing system (ASOS) and we used the averaged wind speed as the wind speed at the reference height (10 m above the ground level). The numerical simulations were performed for 16 inflow directions, before and after the construction of wind fences with the heights of 5 m and 10 m (total 48 simulations). The detailed flows were analyzed for the northeasterly and south-southwesterly cases which predominantly observed at the Busan ASOS. In the northeasterly case, high concentration appeared at the elementary school next to the construction site due to transport by the airflow coming from the northeast. In the 5-m wind fence case, the wind speeds were slightly weaker and the spread of the fugitive dust was slightly less than those in the no wind fence case. In the 10-m wind fence case, the dust concentration at the elementary school has the maximum reduction of 37%. In the south-southwesterly case, the flow pattern became complicated in the construction site due to the terrain and buildings. Fugitive dust was stagnant at the south side of the construction site but rather spread to the north, increasing the concentration at the elementary school. After the wind fence was built, the concentrations inside the construction site became high as the wind speeds decreased inside, but, the concentrations in the elementary school rather decreased.