• Title/Summary/Keyword: 전복 치패

Search Result 50, Processing Time 0.021 seconds

Survival and Growth in Juvenile Abalone Haliotis discus hannai to Ocean Acidification and Elevated Temperature (해양 산성화 및 수온 상승 환경에서의 전복치패(Haliotis discus hannai)의 생존 및 성장)

  • Lee, Kyoung-Seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • The increasing of atmospheric $CO_2$ are changing the pH (ocean acidification) and temperature of the sea. Although the effects of ocean acidification on calcifying organisms have well-documented, only a few studies have examined the combined effects of ocean acidification and elevated temperature. This study investigated the effects of ocean acidification and elevated temperature for 2100 on survival and growth of juvenile abalone, Haliotis discus hannai. Ocean acidification was simulated by bubbling $CO_2$ into seawater at concentrations of 1,000 and 1,500 ppm, and temperature was set at room temperature $+2^{\circ}C$. Neither $CO_2$ nor temperature had a significant effect on survival of abalone, while both significantly affected growth. There was no significant interaction between the two factors. Shell length can be used as a growth index of abalone to access the impacts of ocean acidification and elevated temperature.

Effects of the Various Dietary Additives on Growth and Tolerance of Abalone Haliotis discus hannai against Stresses (다양한 사료첨가제 공급에 따른 전복의 성장과 스트레스에 대한 내성 효과)

  • Cho, Sung-Hwoan;Kim, Chung-Il;Cho, Young-Jin;Lee, Bom-Sok;Park, Jung-Eun;Yoo, Jin-Hyung;Lee, Sang-Min
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2008
  • Effects of the various dietary additives on growth and tolerance of abalone Haliotis discus hannai to the stresses were determined in the 16-week feeding trial. Seventy juvenile (an initial body weight of 4.2 g) abalone per container were randomly distributed into 21, 50 L plastic rectangular containers each. The six kinds of experimental diets were prepared: control (CON) with no additive, by-product of green tea (BPG), extract of figs (EF), extract of green tea (EG), commercially available product of Hearok (PH), and Haematococcus (HC). In addition, dry sea tangle (ST) was prepared to compare the efficiency of the experimental diets. Fishmeal, soybean meal and shrimp head meal were used as the protein source, and dextrin, sea tangle powder and wheat flour, and soybean oil and fish oil were used as the carbohydrate and lipid sources, respectively in the experimental diets. The experimental diets were fed to abalone once a day at a satiation level with a little leftover. The feeding trial lasted for 16 weeks. At the end of the 16-week feeding trial, abalone was exposed to the different types of stresses (air exposure, and sudden changes of rearing temperature and salinity). Survival of abalone fed the sea tangle was highest. However, weight gain of abalone fed the EF, EG and PH diets was significantly (P<0.05) higher than that of abalone fed the BPG diet or dry sea tangle. Shell length of abalone fed the all experimental diets was significantly (P<0.05) higher than that of abalone fed the dry sea tangle. Accumulated mortality of abalone fed the sea tangle was low when exposed to the different types of stresses. Also, relatively low mortality was achieved in abalone fed the HC and EF diets. In considering these results, it can be concluded that the various sources of additives is effective to improve production of abalone, and Haematococcus and extract of figs can be considered as dietary additives to improve resistance of abalone against the different types of stresses.

Potential use of Bacillus amyloliquefaciens as a probiotic bacterium in abalone culture (북방전복, Haliotis discus hannai 에 대한 Bacillus amyloliquefaciens의 probiotic 효과)

  • Park, Jin Yeong;Kim, Wi-Sik;Kim, Heung Yun;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • In comparison to the numbers of such studies of fish, few studies have been carried out on the immunity, physiology and ecology of abalone, while studies on abalone disease are also extremely rare. Moreover, mass mortality of cultured abalone due to pathogenic bacteria has not been reported in the southern coast of Korea. However, Vibrio-like bacteria have been isolated from dead abalone, which indicates that a review is required in order to determine the cause of abalone mortality. Use of an antimicrobial agent to minimize the damage caused by disease in abalone farms is common, but the therapeutic effects are insignificant. Demand for probiotics has increased, but research on the development of probiotics for use in abalone culture is very rare. Therefore, the present study isolated KC16-2 from fermented kimchi soup and investigated the characteristics of the isolate as a candidate probiotic bacterium in abalone. KC16-2 was identified as Bacillus amyloliquefaciens (B. amyloliquefaciens KC16-2) based on its biochemical properties and 16S rRNA gene sequence. B. amyloliquefaciens KC16-2 showed inhibitory effects against the growth of various vibrios in vitro, and kept the numbers constant until four days after inoculation in marine water at a temperature of $15{\sim}25^{\circ}C$, indicating the possible use of KC16-2 as a probiotic, except in the winter. The growth of KC16-2 was inhibited by bile salt, but the numbers increased over time suggesting the bacteria were still alive in the abalone's digestive tract. Abalone fed with a diet including KC16-2 for 12 weeks showed good growth, but showed no significant differences from the control group. However, the mortality of the abalone supplied the probiotic diet was reduced to half that of the control group in a challenge test with Vibrio tubiashii. Therefore, we suggest that B. amyloliquefaciens KC16-2 could be used as a probiotic bacterium for control of the mortality of abalone caused by opportunistic pathogenic vibrios.

Dietary Value of Three Benthic Diatom Species on Haliotis discus hannai Larvae (북방전복 Haliotis discus hannai 유생에 대한 3종 부착 규조류의 먹이효율)

  • Park, Se Jin;Hur, Sung Bum
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • Although the method of seedling production of Haliotis discus hannai is well known, the optimum benthic diatom species as a live food at early larval stage are not fully developed. In this study three Pennales diatom species, Caloneis schroederi, Rhaphoneis sp., and Cocconeis californica were examined on settlement, metamorphosis, survival, and growth of Haliotis discus hannai larvae. The larvae fed Raphoneis sp. or C. californica showed high settlement rate with 80-82% within 48 hrs, which was significantly higher than those fed C. schroederi or mixed diets with three diatom species. The larvae fed the former microalgal species also showed higher metamorphosis rate with 32-34% than the latter species with 10-12% within 4 days. With regard to survival and growth of the larvae, single diet with Rhaphoneis sp. or C. californica had better dietary value than the mixed diets for the early larvae of H. discus hannai.

The Effects of Substituting Squid Meal and Macroalgae with Soybean Meal in a Commercial Diet on Growth and Body Composition of Juvenile Abalone Haliotis discus hannai (전복(Haliotis discus hannai) 용 배합사료내 오징어분 및 해조류 대체원으로서 대두박이 전복 치패의 성장과 체조성에 미치는 영향)

  • Kim, Byeng-Hak;Kim, Hee Sung;Cho, Sung Hwoan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.329-336
    • /
    • 2015
  • We examined the effect of substituting squid meal and macroalgae with soybean meal in a commercial diet on the growth and body composition of juvenile abalone Haliotis discus hannai. We randomly distributed 2310 juvenile abalone into 33 rectangular plastic containers and fed them five experimental diets in triplicate as follows. The control diet (Con) consisted of 12% squid meal, 8% corn gluten and 20% soybean meal as protein source, wherein 10% ${\alpha}$-starch, 20% wheat flour, and 5% dextrin were carbohydrate source. The experimental diets, 50% squid meal (SM50), 50% squid meal and 50% macroalgae (SM50+MA50), and 100% squid meal and 50% macroalgae (SM100+MA50) were substituted with the same respective amounts of soybean meal. The fifth experimental diet consisted of the control diet plus 1% diatom powder (DP). We prepared two domestic (Domestic A and B) and two imported (China and Japan) abalone feeds. Finally, we prepared Undaria and sea tangle. We found that the weight gain of abalone fed the Con, DP, and China and Japan diets was significantly greater than that of abalone fed Undaria and sea tangle. We conclude that the substituting squid meal and macroalgae with soybean meal in abalone feed has limited benefits, but supplementing diets with 1% diatom powder is effective in improving weight gain.

Shell Necrosis of Haliotis discus hannai by Mastigocoleus sp. (Cyanophyta) in Korea (남조류, Mastigocoleus sp.에 의한 한국산 참전보의 패각 괴사증)

  • 최상덕;윤장택;조용철
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.465-474
    • /
    • 1998
  • Shell necrosis, which is found in the juvenile stage of Haliotis discus hannai in th culture process, was examine in this study. In the necrosis shell, bacteria of rod type and a blue green algal species with heterocyst were observed. However, it appears to be caused by a boring blue green alga, Mastigocoleus sp., as based on SEM data. At the time of its infection, the shell was discolored from green into bright-grey, and then began to be brittle at the 4th to 6th breathing hole. After 60 days of culture, necrosis occurred in the breathing holes with many brown tiny colony, and continued to 3 years after culture. This shell necrosis was found in the tank culture system in land rather than in the cage culture system in sea, and greatly affected to the growth of Haliotis discus hannai, resulting in very small size of 16mm in 3 year old shell.

  • PDF

The Effects of Suspended Solids on the Mortality and the Glycogen Content of Abalone, Haliotis discus hannai (참전복, Haliotis discus hannai의 폐사 및 글리코겐 함량에 미치는 부유토사의 영향)

  • Lee, Kyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Elevated concentrations of suspended solids in the marine enrironment caused by coastal developments have threatened to the marine ecosystem. Effects of suspended solids on the mortality and the modifications of glycogen levels of abalone, Haliotis discus hannai were studied. Abalone were exposed to suspended solids with concentrations of 0 (control), 1,000, 1,500 and 2,000 mg/ L for 96h. These suspended solids had no effect on the mortality of abalone. Significant decreases in the glycogen content of soft tissues were observed over 1,500 mg/ L concentration of suspended solids. These results suggested that abalone could tolerate a high level of suspended solids. However, it is necessary to observe further the long term effects of suspended solids on the physiological responses of abalone.

  • PDF

A Study on the Optimum Stocking Density of the Juvenile Abalone, Hailotis discus hannai Net Cage Culture or Indoor Tank Culture (해상가두리 및 실내 육상수조에서 북방전복, Haliotis discus hannai 치패의 적정 수용밀도에 관한 연구)

  • Kim, Byeong-Hak;Park, Min-Woo;Son, Maeng-Hyun;Kim, Tae-Ik;Cho, Jae-Kwon;Myeong, Jeong-In
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2013
  • Experiments for net cage culture at sea were conducted in each $2.4{\times}2.4$ m in area and took the samples from four different densities: 150, 300, 450 and 600 per cross-sectional area ($m^2$) of shelter. The same stocking densities applied to indoor tank culture to investigate the growth and survival rate. The size of juvenile abalone sample was $36.14{\pm}2.28$ mm for net cage culture and $38.62{\pm}3.22$ mm or indoor tank. Feed such as raw brown sea mustard, raw kelp and dried kelp was sufficiently provided to the abalone. In net cage culture experiment, the growth of the spat of juvenile abalone was the fastest $60.53{\pm}5.75$ mm in the 150 abalone cage per square meter ($m^2$), followed by the 300 abalone cage at $54.01{\pm}5.17$ mm, 450 abalone cage at $51.48{\pm}5.37$ mm and 600 abalone cage at $51.09{\pm}4.96$ mm in order. In the meantime, in the indoor tank experiment, the 150 abalone indoor tank was the fastest $47.50{\pm}6.31$ mm per square meter, followed by the 300 abalone tank at $45.92{\pm}5.23$ mm, the 450 abalone tank at $44.24{\pm}5.59$ mm and the 600 abalone tank at $43.62{\pm}4.44$ mm in order. The survival rate was more than 97.9% in all the experiments, not showing a significant difference.

Induction of Triploid Abalone, Haliotis discus hannai and Its Biological Characteristics III. Growth and Survival Rate of Triploid Abalone (참전복, Haliotis discus hannai의 3배체 유도와 생물학적 특성에 관한 연구 III. 3배체의 성장)

  • 지영주;장영진
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.123-131
    • /
    • 1997
  • Growth of triploid abalone, Haliotis discus hannai induced by cody (3$^{\circ}C$) shock and its feed efficiency were investigated from larva to adult for 51 months. After 51 months from triploidy induction, the triploid abalones have outgrown to diploid abalones in shell length and total weight. Triploid abalones with inhibition of extrusion of first polar body (3n-1pb) were outgrown to diploid abalones, however, triploid abalones with inhibition of extrusion of second polar body (3n-2pb) were not significantly different from diploid controls in shell length and total weight through the whole rearing period (P<0.05), because of their heterozygosity differences. Daily feeding rates and feed conversion rates decreased with the growth of abalones and both rates had no differnce between two experimental groups. After 51 months from inducing triploid, conditin index of triploid abalone (64.1%) was higher than that of diploid control (59.4%) (P<0.05). Survival rate was 63.0% in triploid group (3n-1pb 62.0%, 3n-2pb 64.0%) and 62.0% in diploid group during the experimental period.

  • PDF

Physiological Changes of Juvenile Abalone, Haliotis sieboldii Exposed to Acute Water-temperature Stress (급격한 수온 스트레스에 따른 시볼트전복, Haliotis sieboldii 치패의 생리적 변화)

  • Kim Tae-Hyung;Kim Kyung-Ju;Choe Mi-Kyung;Yeo In-Kyu
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • This study was conducted to investigate changes of hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD) and Heat Shock Protein 70 (HSP70) mRNA in hemolymph, hepatopancreas and gill of abalone (Haliotis sieboldii) exposed to various water temperatures. Abalones were exposed to 10, 15, 20, 25 or $30^{\circ}C$ for 0, 6, 12, 24 or 48 hours. Survival rate of abalone was 100% at 10, 15, 20 and $25^{\circ}C$, but 0% at $30^{\circ}C$. Hemolymph counts increased at lower water temperatures (10 and $15^{\circ}C$) and decreased at $30^{\circ}C$. SOD activity decreased immediately after exposure to lower or higher water temperatures compared to the control ($20^{\circ}C$) with an exception at $30^{\circ}C$ where the activity increased. At lower temperatures, SOD activity rose high after 24 hours, but decreased again at 48 hours. At $25^{\circ}C$, it decreased compared to the control. CAT activity decreased immediately after exposure to 10 or $25^{\circ}C$ compared to the control, and then was recovered to the initial level after increment. At $15^{\circ}C$, CAT activity was high after 6 hours, and then was recovered to the initial level after increment. At $30^{\circ}C$, the activity decreased throughout the experiment. The HSP70 mRNA expression in gill increased at lower temperatures compared to the control ($20^{\circ}C$) and $25^{\circ}C$. In this study, rapid change of wale, temperature caused stress response in abalone which had been raised at $20^{\circ}C$. At molecular level, HSP70 was expressed rapidly, but antioxidant enzymes like SOD and CAT were expressed later than HSP70. At 15 and $25^{\circ}C$ of water temperatures, the HSP70, SOD and CAT expression were stable with time. However, at $30^{\circ}C$, all abalone died possibly because they could not develop resistance to high temperature.