• Title/Summary/Keyword: 전면 패널

Search Result 25, Processing Time 0.027 seconds

평판 디스플레이의 효율화를 위한 진공 인-라인 실장기술에 관한 연구

  • 권상직;홍근조;성정호;이창호;권용범
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.45-45
    • /
    • 2000
  • PDP, FED, 그리고 VFD와 같은 마이크로 전자디스플레이 장치를 제작하기 위한 가장 중요한 기술중에 하나인 패널 내를 고진공으로 만드는 것과 초기의 진공을 유지하는 것이다. PDP 디스플레이는 전면판과 후면판으로 구성되어 있다. 전면판은 ITO전극, 절연체 그리고 MgO보호막으로 구성되어 있으며, 후면판은 어드레스 전극, 반사층, 격벽, 그리고 형광체층이 있다. 기존의 방식은 대기에서 프릿 글라스를 이용하여 두 장의 유리를 봉입하고, 후면판 모서리 부분에 있는 구멍에 배기 글라스 튜브를 붙이고, 튜브를 통해서 배기하고, 플라즈마 가스를 채우고, 최종적으로 tip-off를 한다. 이러한 기존의 방식을 통해서는 배기 컨덕턴스의 한계로 얻을 수 있는 초기 진공도에 한계가 있다. 아울러 두 장의 유리사이는 150$\mu$m 정도의 간격으로 되어 있고, 이웃한 격벽사이는 320$\mu$m 정도의 미세한 공간이 주어지는 구조가 컨덕턴스를 저하시킨다. 이와 같은 초기 진공도의 한계성을 극복하기 위한 연구로서, PDP 패널을 구성하는 두 장의 글라스를 진공 챔버내에서 IR heater를 이용하여 실장하였다. 대개 PbO, ZnO, SiO2,, 그리고 B?로 구성된 프릿 글라스를 대기에서 전면판에 dispensing하고 가소한다. 그리고 프릿 글라스가 형성된 전면판과 후면판을 loading, align 한 다음, 2 10-7torr까지 펌핑한 후 heating, holding 그리고 cooling 공정을 수행하므로 써 두 장의 유리를 실장하였다. 그러나 온도의 non-uniformity, 프릿 성분에 따라서 crack과 기포문제가 진공 실장과정에서 발생하였다. 이와 같은 문제를 개선하기 위해 프릿 글라스의 새로운 조성과 온도 uniformity를 유지하므로써, 프릿 글라스의 기포와 crack 발생없이 재현성 있게 진공 실장하였다. Leak channel 형성유무를 검증하기 위하여 챔버 자체의 펌핑 속도와 제작된 패널의 펌핑 속도를 비교하므로써, leak channel형성 유무를 평가할 수 있는 방법을 이용하였다. 이와 같은 방법을 이용하여, crack 또는 기포가 있는 패널은 leak channel을 형성하여 패널내의 진공을 유지할 수 없음을 검증하였고, crack 또는 기포가 없는 패널은 leak channel없이 패널내의 진공을 유지할 수 있음을 검증하였다. 결과적으로 진공 인-라인 실장시 가장 중요한 요인인 프릿의 변화를 분석하므로써, 고진공을 요구하는 FPD(PDP, FED, VFD)에 적합하게 적용할 수 있으며, 아울러 실장시 진공도를 개선하므로 패널내부의 오염을 최소화하여 디스필레이로서의 효율을 극대화할 수 있을 것이다.

  • PDF

Field Monitoring of Panel-type Reinforced Earth Walls Using Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재를 사용한 패널식 보강토옹벽의 현장계측 연구)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • A new style of panel-type reinforced earth wall is a more integrated structure by connecting the geosynthetic strip reinforcement with a folding groove directly to the front panel through C-shaped insertion hole embedded in the panel. In this study, field measurements were conducted on two reinforced earth walls constructed at different sites to assess the field applicability and structural stability of the new style of panel-type reinforced earth wall. The horizontal displacement of the front panel, tensile deformation of the geosynthetic strip reinforcement, and horizontal earth pressure acting on the panel were measured and analyzed through the field measurements. According to the field measurements, after completion of the reinforced earth wall construction, the maximum horizontal earth pressure applied to the front panel was less than two-thirds of the Rankine earth pressure, and the maximum horizontal displacement of the front panel was less than 0.5% of the wall height, and the maximum tensile strain generated on the reinforcement was less than 1.0%. Therefore, it was found that two reinforced earth walls constructed at different sites remained stable.

Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test (대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Ki, Minju;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1(V):0.7(H). Also, a case of a cast in placed concrete wall is used in steep slopes less than 1(V):0.5(H). The cast in placed concrete walls are constructed to 30 cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system will be proposed. This method is assembly construction using precast concrete panels with 20 cm thick. So, the ability of construction and the quality of facings can be improved more than a conventional soil nailing system. This method can be obtained the effects that a global slope stability increase, as precast concrete panels are immediately put on cutting face after excavating a slope. In this study, confining effects of concrete panels using the assembling soil nailing system were found out by large scaled load tests. In the tests, the load-settlement relationship to an assembling soil nailing system due to the stiff facings as concrete panels appeared to be better than a typical soil nailing system with shotcrete facings.

  • PDF

조종석 패널의 국산화에 도전한다 - 삼진정보통신(주)

  • 한국항공우주산업진흥협회
    • Aerospace Industry
    • /
    • v.80
    • /
    • pp.22-25
    • /
    • 2003
  • 항공기 조종석 전면에 펼쳐놓은 듯이 다양한 기능의 계기들이 조종사에게 필요한 비행정보와 항공기 상태에 관한 정보, 항법 및 통신에 관한 정보를 제공하는데 이 전체를 통틀어 조종석 패널이라 칭한다. 항공기를 구성하는 수십만개의 부품중 이 조종석 패널의 국산화에 과감히 도전장을 낸 업체가 있다. 이제 막 국내 항공기 부품업체로 진입하려는 삼진정보통신(주)가 바로 그곳이다.

  • PDF

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

A Reduction Effect in Noise Reflection by Different Shapes of Soundproofing-panel (도로소음원에 대한 방음패널 형상별 반사소음 저감효과)

  • Kim, Ilho;Park, Taeho;Chang, Seoil;Lee, Haein
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.120-125
    • /
    • 2015
  • With rapid urbanization, the volume of traffic in urban area has been significantly increased. This in turn led to problem which can be described as Road Traffic Noise. Currently, to alleviate the road traffic noise damage, a demand for installation of soundproofing walls is rising. Among different shapes of soundproof walls being installed, the reflection-type acoustical insulation panel is highly drawing attentions of residents due to the fact that it does not obstruct their field of vision in contrast with the opaque acoustical insulation panel. On the other hand, improving the soundproofing wall of the reflection-type acoustical insulation barrier panel needs to be focused on since it has a possibility to cause a secondary damage by reflected sounds. Therefore, in this research, study has been carried out to improve the forms in order to minimize travelling of reflected sounds through changing the frontal surface shape and geometrical shape of the reflection-type soundproofing panel. A result from comparison between the normal reflection-type soundproofing panel and the improved soundproofing panel, with reduction effects in the noise reflection, showed that the curved type of soundproofing panel has an impact on reducing the noise up to 1.5 dB. Furthermore, from the research conducted, it appears that the increase and decrease in the reflected sounds can be changeable depending on various design factors. Thus, it turns out that the study shows a potential possibility to develop a reduction technology of the reflected sounds pertaining to overall condition on the soundproofing walls.

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

A study on design for animal X-ray detector using CFRP CNT panel (CFRP CNT 패널을 적용한 동물용 X-ray 디텍터 디자인에 관한 연구)

  • Lee, Suk-Hyun;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2020
  • Design was developed through user-oriented service design methodology and survey was conducted on material selection criteria for prototype production to select CFRP (Carbon Fiber Reinforced Plastics) CNT (Carbon Nano Tube), which was applied to animal X-ray detector panel to design product and develop prototype. Completed prototype with the application of CFRP CNT panel was tested in drop test, frontal external pressure test, and dustproof/waterproof performance to confirm that it can be utilized as a portable animal X-ray detector used in outdoor environment.

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.