• 제목/요약/키워드: 전륜정렬

검색결과 1건 처리시간 0.014초

차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화 (Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement)

  • 김용석;장동영
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.