• Title/Summary/Keyword: 전륜

Search Result 70, Processing Time 0.036 seconds

Development for Automotive Active Front Steering System (자동차용 능동 전륜 조향 제어 시스템 설계)

  • Cho, Young-Hoon;Je, Sung-Kyu;Yun, Seok-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.280-282
    • /
    • 2008
  • 본 논문은 자동차용 능동 전륜 조향 제어 시스템을 소개한다. 능동 전륜 조향 장치는 조향의 편의성과 안정성을 위하여 조향비를 가변하거나 유사시 능동적으로 전자 제어 유닛(Electronic Control Unit : ECU)이 액추에이터를 제어해 주는 시스템이다. 최근 전자 샤시 시스템의 개발 추세인 샤시 통합 제어 관점에서 능동 전륜 조향 장치의 역할을 설정하고 성능 만족을 위한 제어기 구조에 관하여 설명한다. 설계된 제어 시스템을 3,300cc급 대형 승용차에 적용하여 그 유용성을 검증하였다.

  • PDF

Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle (전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

Dynamic Behaviors and Optimal Design of an Aircraft Nose Landing Gear using ADAMS (ADAMS를 이용한 항공기 전륜착륙장치의 동적거동해석 및 최적설계)

  • Kim, Sun-Goo;Kim, Cheol;Kim, Young-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.612-618
    • /
    • 2007
  • The dynamic behaviors of a KT-1 family aircraft nose landing gear have been analyzed and the optimal design of an aircraft shock absorber has been conducted to improve efficiency of shock energy absorption. The nose landing gear is modeled as a 2 DOF system using ADAMS and various operational and environmental landing conditions were considered. The results of dynamic simulation for various landing conditions agree well with experiments. Also the effect of parameters of a shock strut on the dynamic behaviors and on shock energy absorption of the nose landing gear has been evaluated for optimal design to define design variables. It has been found that the parameters of a shock strut such as oil-density and orifice area have more effects on dynamic behaviors than those of operation conditions. Optimal design is performed to maximize the efficiency of shock energy absorption using Feasible Direction Method. As a result the design values of the shock strut for maximum efficiency of shock energy absorption are derived and it turns out that efficiency and dynamic behaviors of the nose landing gear were improved by the optimal design.

Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering (전륜 조향용 전기식 작동기 피로수명 평가)

  • Young-Cheol Kim;Hyun-gi Kim;Dong-Hyeop Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2023
  • Recently, the consideration of eco-friendly technology to reduce greenhouse gas is being emphasized in the aviation field. Various studies for applying electro-mechanical actuators that control mechanical linear and rotational movements using electricity as the primary power source are in progress. In this study, the fatigue analysis of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was carried out. A unit load stress table was constructed for the vulnerable part selected through structural analysis, and the representative stress for each load profile was calculated using the unit load stress table constructed for the vulnerable part. Then, individual profiles of representative stress group were extracted from continuous load profiles by applying the rainflow counting method. The damage of each profile was calculated by applying the S-N diagram. Finally, the total damage in the vulnerable parts was calculated by the linear cumulative damage law, and the fatigue life of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was evaluated.

A Linear Model of Lateral Dynamics of the KRRI All Wheel Steered Vehicle (KRRI 전륜 조향 차량의 횡 방향 선형 동역학 모델)

  • Kim, Young-Chol;Yun, Kyoung-Han;Min, Kyung-Deuk;Byun, Yun-Seob;Mok, Jai-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.230-231
    • /
    • 2008
  • 본 논문은 KRRI 전륜 조향 차량의 횡 방향 동역학 모델링에 대한 내용을 기술한다. 이 차량은 굴절버스 형태를 갖고 모든 차륜의 조항이 가능하며 트레일러와 트랙터의 후륜이 독립적으로 구동 가능한 시스템을 갖고 있다. 이 시스템의 모델링은 비선형 동역학 방정식을 유도하고 선형화 한 뒤 횡 방향 동역학 모델만을 분리해서 최종적으로 횡 방향 선형 동역학 모델을 유도하는 과정을 거친다. 마지막으로 시뮬레이션을 통해 선형 모델을 검증한다.

  • PDF

Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System (능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft (회전익 항공기 전륜착륙장치 단속거동 현상 개선연구)

  • Choi, Jae Hyung;Chang, Min Wook;Lee, Yoon-Woo;Yoon, Jong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

A Study on Lateral Stability Enhancement of 4WS Vehicle with Active Front Wheel Steer System (능동전륜조향장치를 채택한 사륜조향차량의 횡방향 안정성 강화에 대한 연구)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • This study is to propose and develop an integrated dynamics control system to improve and enhance the lateral stability and handling performance. To achieve this target, we integrate an AFS and a 4WS systems with a fuzzy logic controller. The IDCS determines active additional steering angle of front wheel and controls the steering angle of rear wheel. The results show that the IDCS improves the lateral stability and controllability on dry asphalt and snow paved road when double lane change and step steering inputs are applied. Yaw rate of the IDCS vehicle tracks reference yaw rate very well and body slip angle is reduced about by 50%. Response time of the IDCS vehicle is also decreased.