• Title/Summary/Keyword: 전류도체

Search Result 289, Processing Time 0.023 seconds

Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses (전자기 로렌츠력을 이용한 다중안정성 마이크로 액추에이터의 비선형 구조 및 전기-열 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1119-1127
    • /
    • 2010
  • In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Manufacture of Low-Speed Type Inductive Coupler Using Nano-Crystalline Alloy (나노결정 합금재료를 이용한 저속형 비접촉식 커플러의 제조)

  • Kim, Hyun-Sik;Kim, Jong-Ryung;Lee, Jun-Hui;Lee, Hae-Yeon;Huh, Jung-Sub;Oh, Young-Woo;Byun, Woo-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.228-228
    • /
    • 2007
  • 전력선 통신용 비접촉식 커플러는 고속형(2~30 MHz)과 저속형(100~450KHz)으로 나누어 볼 수 있는데, 고속형은 현재 국내에서 독자적으로 개발되어 다양한 모델이 적용되고 있는 상황이지만, 저속형은 시작품수준으로 제조되어 있으나 신호전송 특성의 향상절구가 필요한 상황이다. 전력선 통신용 커플러는 전력선 또는 모뎀으로 통신신호를 전달하는 기능을 하는 것으로서, 전력선 통신을 위한 핵심부품이다. 따라서 본 연구에서는 100~450 KHz 대역에서 사용 가능한 저속형 비접촉식 커플러를 제조하기 위해, 권선조건, 대전류형 자심재료의 모의 해석, 노이즈 필터조건, 임피던스 매칭, 하우징방법 등의 각 공정 변수를 확립하고자 하였다. 자심재료의 모의해석에서 자심재료의 높이와 전력선 도체 단면적 변화는 자심재료의 전류포화특성에 영향을 미치지 않으며, 유효길이와 에어-갭 크기가 증가할수록 전류포화특성은 향상되는데, 자심재료의 내경이 64 mm일 때 자심재료의 폭((외경-내경)/2)은 15 mm 이상이어야 하고, 에어-갭은 약 $600\;{\mu}m$ 정도의 에어-갭을 형성시켜야함을 확인할 수 있었다. 또한 저속용 비접촉식 커플러 제조조건 실험에서 내경${\times}$외경${\times}$높이가 $64{\times}94{\times}140mm$인 자심재료를 이용하여 권선 수와 에어-갭을 각각 3회, $400{\sim}600\;{\mu}m$ 삽입했을 때, 가장 우수한 특성을 나타내었다. 그리고 저역 통과 필터를 출력부에 내장하여 통신신호 이외의 노이즈를 제거할 수 있었다. 본 연구에서 제조된 300 A급 지중선용 저속형 비접촉식 커플러는 내경${\times}$외경${\times}$높이가 $58{\times}1144{\times}158mm$이고, 100~450 KHz 통신대역에서 약$7{\pm}2dB$의 삽입손실을 나타내었다.

  • PDF

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

Preparation of YBa2Cu3O6+x Superconducting Wires Prepared by Pyrophoric Synthetic Technique (발화합성법에 의한 YBa2Cu3O6+x 초전도 선재의 제조)

  • Yang, Suk-Woo;Lee, Young-Min;Kim, Young-Soon;Park, Jeong-Shik;Kim, Chan-Joong;Hong, Gye-Won;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1011-1017
    • /
    • 1998
  • $YBa_2Cu_3O_{6+x}(Y123)-Ag$ high-Tc superconducting wires were fabricated by plastic extrusion technique using pyrophoric synthetic and mechanical mixing powder with and without Ag addition(20 wt.%). This method involves powder preparation, plastic paste making, die extrusion, binder burn-out and the sintering process. In order to fabricate a good-quality superconducting body, it is required to use homogeneous and fine-size power as a starting materials. $Y_2O_3-BaCO_3-CuO$ precursor powders with/without Ag addition were prepared both by pyrophoric synthetic(PS) and mechanical mixing(MM) method of raw powders. The formation kinetics of the powder mixtures into Y123 phase was investigated at various temperatures and times in air atmosphere. The powder prepared by PS method was more easily converted into a Y123 phase than the MM powder. The fine size and good chemical homogeneity of the powder prepared by PS method is attributable to the fast formation into a Y123 phase. The critical current density($J_c$) of the Y123-Ag superconducting wires made by plastic extrusion method were in the range of $150A/cm^2{\sim}230A/cm^2$. depending on the charateristics of starting material powders. $J_c$ of the wire prepared by pyrophoric synthetic powder with 20 wt.% Ag addition was $230A/cm^2$.

  • PDF

The Preparation of Bi-2223 Superconducting Powder and Tape by Emulsion Drying Method (에멀젼 건조법에 의한 Bi-2223 초전도 분말과 테이프 제조)

  • 장중철;이응상;이희균;홍계원
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The powder preparation by using emulsion drying method, one of the chemical powder fabrication methods has the advantages; easy to control the chemical stoichiometry and to fabricate homogeneously fine particles. In the present study, the initial morphology and size distribution of the powder fabricated by using emulsion dry-ing method were controlled and were improved the homogeneity. By carefully controlling the mixing ratio of oil phase and aqueous solution and surfactant of preventing emulsion separation, the Bi(Pb)-Sr-Ca-Cu-O su-perconducting powders were prepared. The properties of the superconducting powder fabricated by this method and the microstructures and superconducting properties of the pelletized samples were investigated. The microstructures and electric properties of the tapes prepared by oxide powder-in-tube method were in-vestigated. The fabricated powder was spherical with less than 1$\mu$m but most of them was agglomerated with 2~5$\mu$m in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in oxygen par-tial pressure of 1/13atm in Ar atmosphere was 108K. And the critical current of the first and second annealed tapes in air prepared by oxide powder-in-tube process were 0.4A and 1.5A, respectively.

  • PDF

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.