• Title/Summary/Keyword: 전력 할당 기법

Search Result 173, Processing Time 0.018 seconds

Flash-Conscious Storage Management Method for DBMS using Dynamic Log Page Allocation (동적 로그 페이지 할당을 이용한 플래시-고려 DBMS의 스토리지 관리 기법)

  • Song, Seok-Il;Khil, Ki-Jeong;Choi, Kil-Seong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.767-774
    • /
    • 2010
  • Due to advantages of NAND flash memory such as non-volatility, low access latency, low energy consumption, light weight, small size and shock resistance, it has become a better alternative over traditional magnetic disk drives, and has been widely used. Traditional DBMSs including mobile DBMSs may run on flash memory without any modification by using Flash Translation Layer (FTL), which emulates a random access block device to hide the characteristics of flash memory such as "erase-before-update". However, most existing FTLs are optimized for file systems, not for DBMSs, and traditional DBMSs are not aware of them. Also, traditional DBMSs do not consider the characteristics of flash memory. In this paper, we propose a flash-conscious storage system for DBMSs that utilizes flash memory as a main storage medium, and carefully put the characteristics of flash memory into considerations. The proposed flash-conscious storage system exploits log records to avoid costly update operations. It is shown that the proposed storage system outperforms the state.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

The Medium Access Scheduling Scheme for Efficient Data Transmission in Wireless Body Area Network (WBAN 환경에서 효율적 데이터 전송을 위한 매체 접근 스케줄링 기법)

  • Jang, EunMee;Park, TaeShin;Kim, JinHyuk;Choi, SangBan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.16-27
    • /
    • 2017
  • IEEE 802.15.6 standard, a Wireless Body Area Network, aims to transfer not only medical data but also non-medical data, such as physical activity, streaming, multimedia game, living information, and entertainment. Services which transfer those data have very various data rates, intervals and frequencies of continuous access to a medium. Therefore, an efficient anti-collision operations and medium assigning operation have to be carried out when multiple nodes with different data rates are accessing shared medium. IEEE 802.15.6 standard for CSMA/CA medium access control method distributes access to the shared medium, transmits a control packet to avoid collision and checks status of the channel. This method is energy inefficient and causes overhead. These disadvantages conflict with the low power, low cost calculation requirement of wireless body area network, shall minimize such overhead for efficient wireless body area network operations. Therefore, in this paper, we propose a medium access scheduling scheme, which adjusts the time interval for accessing to the shared transmission medium according to the amount of data for generating respective sensor node, and a priority control algorithm, which temporarily adjusts the priority of the sensor node that causes transmission concession due to the data priority until next successful transmission to ensure fairness.