• Title/Summary/Keyword: 전력 부하 예측

Search Result 283, Processing Time 0.045 seconds

Power Consumption Patterns Analysis Using Expectation-Maximization Clustering Algorithm and Emerging Pattern Mining (기대치-최대화 군집 알고리즘과 출현 패턴 마이닝을 이용한 전력 소비 패턴 분석)

  • Jin Hyoung Park;Heon Gyu Lee;Jin-Ho Shin;Keun Ho Ryu;Hiseok Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • 전력 회사의 효율적인 운용과 전력 시장에서의 경쟁을 위하여 고객의 전력 소비 패턴 분석 및 정확한 예측이 이루어져야 한다. 이를 위해서 이 논문에서는 원격 검침 시스템에 의한 전국의 고압 고객 데이터를 대상으로 고객의 전력 소비 패턴을 정확히 예측할 수 있는 마이닝 기법을 제안하였다. 먼저, 국내 계약종별 고객 특성에 맞는 부하 패턴의 정확한 구별을 위한 9가지의 특징 벡터를 추출하였고, 기대치-최대화 군집화 알고리즘을 사용하여 고객의 34개 대표 부하프로파일을 생성하였다. 마지막으로 추출된 특징 벡터로부터 각 대표 프로파일에 대한 출현 패턴 기반의 분류 모델을 구성하여 고객의 전력 소비 패턴을 분류하였다. 국내 원격 검침 시스템에 의해 측정된 총 3,895명의 고압 고객 데이터에 대한 실험 결과 약 91%의 분류 정확성을 보였다.

A digitial control algorithm for PDP's DC-DC converters using a load current prediction technique (부하전류 예측기법을 이용한 PDP DC-DC 컨버터의 디지털 제어 알고리즘)

  • Chae S.Y.;Hyun B.C.;Agarwal P.;Cho B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.406-408
    • /
    • 2006
  • 본 논문은 플라즈마 디스플레이 패널(PDP) 전원공급 장치로 사용되는 DC-DC 컨버터의 동적 응답특성을 향상 시킬 수 있는 새로운 디지털 제어 알고리즘을 서술한다. 제안하는 알고리즘은 PDP에 영상을 표시하기 위한 영상 입력신호와 구동회로의 유지방전 파형의 제어를 위한 신호를 이용하여 부하전류의 변화량과 시점을 예측한다. 별도의 추가적인 전류센서를 사용하지 않고 예측된 부하전류 정보는 일반적인 디지털 전압 제어기에 피드포$\sim$워드 형태로 추가되어 적용된다. 제안된 알고리즘은 디지털 Pl 전압 제어기만을 사용한 경우에 비해 부하전류가 급격히 변동할 때 좀 더 빠른 응답특성과 낮은 출력전압 변동 특성을 보인다. 제안된 알고리즘은 FPGA를 사용하여 구현 되었으며, Buck 컨버터를 사용하여 기본 동작을 검증하였다.

  • PDF

Enhancing Summer Electricity Demand Forecasting Using Fourier Transform-Based Time Variables

  • Jae-Ho Shin;Hyun-Uk Seol;Han-Byeol Jo;Jong-Kwon Jo;Sung-Ju Kim;Byoung-Ho Jang;Young-Soon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.31-40
    • /
    • 2024
  • In the summer, when the cooling load rises due to high temperatures, the hourly demand increases during the day and is relatively less at night compared to the day. These characteristics are considered important information in predicting summer electricity demand. However, if time information is simply expressed as a dummy variable, the model simply recognizes differences between time zones rather than learning changes in time. In this study, we would like to approach this problem by using a time variable using the Fourier transform. Time variables using the Fourier transform will be able to effectively learn differences between times. As a result of evaluating the type of time variable in the summer electricity demand forecast for 2022 and 2023 using the BiGRU model, the model using the time variable using Fourier transform showed the best performance with MAPE of 2.01% and 2.04% confirmed. The results of this study are expected to improve prediction accuracy in the summer when power usage increases and prevent problems such as large-scale power outages.

Identification of fuzzy Model using Back-propagation : Electric Power Load Forecasting (역전파학습을 이용한 퍼지모델의 파라메터 동정: 전력부하 예측)

  • 김이곤;류영재;김홍렬;박창석;곽호철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.186-192
    • /
    • 1995
  • 본 연구에서는 퍼지 클러스터링 알고리즘과 변수선택 방법을 이용하여 모델의 구조 동정을 행하고, 신경회로망의 Back-propagation 학습방법을 이용하여 파라메터동정을 행하 는 새로운 퍼지모델링 알고리즘을 제안하였다. 실제 데이터를 이용하여 전력부하예측시스템 을 설계하였으며 그 결과 타당성을 입증하였다.

  • PDF

Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study (부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구)

  • Lee, Gi-Hyun;Kwak, Gyung-il;Chae, U-ri;KO, Jin-Deuk;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.267-278
    • /
    • 2020
  • ESS is an essential requirement for resolving power shortages and power demand management and promoting renewable energy at a time when the energy paradigm changes. In this paper, we propose a cost-effective ESS Peak-Shaving operation plan through load and solar power generation forecast. For the ESS operation plan, electric load and solar power generation were predicted through RMS, which is a statistical measure, and a target load reduction guideline for one hour was set through the predicted electric load and solar power generation amount. The load and solar power generation amount from May 6th to 10th, 2019 was predicted by simulation of load and photovoltaic power generation using real data of the target customer for one year, and an hourly guideline was set. The average error rate for predicting load was 7.12%, and the average error rate for predicting solar power generation amount was 10.57%. Through the ESS operation plan, it was confirmed that the hourly guide-line suggested in this paper contributed to the peak-shaving maximization of customers.Through the results of this paper, it is expected that future energy problems can be reduced by minimizing environmental problems caused by fossil energy in connection with solar power and utilizing new and renewable energy to the maximum.

A Study on Changing Patterns of Short-run and Long-run Electricity Demand in Korea (우리나라 전력수요 패턴의 장단기 변화 실적에 대한 연구)

  • Kim, Kwon-Soo;Park, Jong-In;Park, Chae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.435-438
    • /
    • 2008
  • 우리나라 최대전력은 70년대 연도별로 36만 kW, 약 15%씩 증가하였으나, 최근 2000년대에는 연도별로 300만kW 이상, 약 6%대의 증가를 보이고 있다. 발생시간도 70년대에는 저녁시간대에 주로 발생했으나 80년대부터 최근까지는 15시에 하계 최대전력이 발생하고 있다 아울러 최근에는 기상의 변동폭 증가로 여름과 겨울의 계절성이 증폭되는 추세에 있고 이러한 최대전력 발생의 이면에는 시간별 부하패턴이 다양하게 나타나고 있다. 과거 70-80년대에는 연간이나 월간 부하패턴 모두 평균전력대비 변동폭이 크게 나타났으나 최근에는 변동폭이 상당히 작아지고 있다. 이는 최대전력에 못지않게 전력소비량이 지속적으로 증가하여 부하수준이 평준화되고, 부하율이 높아지고 있다는 것을 나타내며 연중 및 일간 피크 발생시점도 다변화되는 특징을 보이고 있다. 따라서 이러한 부하패턴 변화에 합리적으로 대응하기 위해서는 짧은 기간의 부하관리보다는 상시 수요관리인 효율향상 위주의 프로그램이 필요하고, 저렴한 전기 요금의 정상화를 통한 전력소비 감축을 통한 대응이 중요하다. 외국의 사례를 보면 우리나라 냉방 및 난방전력은 현재보다 10%p-20%p 정도 점유비가 추가적으로 상승할 개연성이 높으므로 다양한 시나리오 예측을 통한 철저한 위험관리 체계 확립이 요구된다.

  • PDF

Analysis of Electricity Demand Patterns using Load Profile Data (Load Profile을 이용한 수요자 그룹별 부하분석 연구)

  • Yu, In-Hyeob;Lee, Jin-Ki;Kim, Sut-Ic;Ko, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.792-794
    • /
    • 2005
  • 최근에 들어서 전력산업에 규제완화가 도입되면서 환경이 급변하고 있는 실정이다. 여러 가지의 환경변화가 예상되지만, 그 중에서도 공급자간에 경쟁도입이 전력산업 참여자간에 주요 이슈로 부상하고 있다. 이와 같은 변화는 전력시스템의 기술 개발 뿐만 아니라 경영전략에도 큰 영향을 미치고 있으며, 대 수요자 서비스의 제공이 전략의 핵심이 되고 있다. 따라서 공급자는 보다 나은 서비스를 제공하기 위해서, 수요자 정보의 수집 및 분석을 해야 할 필요가 있다. 본 논문에서는 전력 수요자의 부하 특성을 분석하고 평가하기 위하여 수요특성별로 그룹으로 분류하는 방법을 개발하고, 분류된 그룹의 특징을 분석하였다. 이와 같은 부하분석의 정보는 가격설계, 수요 및 에너지 예측, 송전 및 배전계획, 에너지 효율 향상 및 부하관리의 필수 자료가 된다. 또한 향후에 개발될 전력 부가서비스의 주요 기반이 될 것으로 예상된다.

  • PDF

The Study on Intelligent Cooling Load Forecast of Ice-storage System (빙축열 시스템의 지능형 냉방부하예측에 관한 연구)

  • Koh, Taek-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1539-1540
    • /
    • 2008
  • 운전자의 경험과 판단에 전적으로 의존하는 빙축열 시스템의 기존 운전방식에서는 운전자의 그릇된 판단과 미숙한 운전으로 인해 과잉 축열이나 냉방공급량 부족현상이 자주 초래된다. 본 논문에서는 경제적이고 효율적인 빙축열 시스템의 운용을 위해 다음날의 구간별 온도, 습도와 냉방부하를 예측하는 자기구성퍼지모델 구축방안을 제안한다. 제안된 방법의 성능과 실제 적용가능성을 검증학기 위하여 한국전력 속초 생활연수원을 대상으로 제안된 방법과 신경회로망, 퍼지모델, 선형회귀모델 등을 이용한 기존의 방법을 적용하여 구한 냉방부하, 온도, 습도의 예측정확도를 비교 분석한다.

  • PDF

The Improvement of Output Voltage of UPS Using a Parallel Control Method (병렬 제어기법을 이용한 UPS 출력 전압의 개선)

  • 成 炳 模;姜 弼 淳;朴 晟 濬;金 喆 禹
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • This paper presents a proper parallel control method using a conventional control and a repetitive control for improving the output voltage waveform of uninterruptable power supply. Although first-order prediction control method shows a good characteristics to rectifier load, it is not sufficient to reduce steady state errors generated in nonlinear loads such as rectifier loads and phase controled loads. So we also employed a repetitive control method. A repetitive control method can eliminate steady state errors in the distorted output voltage caused by cyclic loads. The presented control scheme is verified through simulation and experiment. Experimental results Implemented on a single phase PWM inverter equipped with a LC output filter with 3 kVA, 60 Hz are shown.

Power Consumption Modeling and Analysis of Urban Unmanned Aerial Vehicles Using Deep Neural Networ (심층신경망을 활용한 도심용 무인항공기의 전력소모 예측 모델링 및 분석)

  • Minji, Kim;Donkyu, Baek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • As the range of use of urban unmanned aerial vehicles (UAV) expands, it is necessary to operate UAVs efficiently because of its limited battery capacity. For this, it is required to find the optimal flight profile with various simulations. Therefore, it is important to predict the power and energy consumption of the UAV battery. In this paper, we analyzed the relationship between the speed and acceleration of the UAV and power consumption during the flight. Then, we derived a linear model, which is easily utilized. In addition, we also derived an accurate power consumption model based on deep neural network learning. To find the efficient model, we used learning data as 1) the GPS 3-axis velocity and acceleration data, 2) the IMU 3-axis velocity only, and 3) the IMU 3-axis velocity and acceleration data. The final model shows 5.86% error rate for power consumption and 1.50% error rate for the cumulative energy consumption.