• Title/Summary/Keyword: 전력 밀도

Search Result 702, Processing Time 0.021 seconds

Carbon Reduction and Enhancement for Greenspace in Institutional Lands (공공용지 녹지의 탄소저감과 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.