• Title/Summary/Keyword: 전력계통 안정화 장치

Search Result 94, Processing Time 0.017 seconds

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

A Study on the Coordination Control Algorithm of Step Voltage Regulator and Battery Energy Storage System for Voltage Regulation in Distribution System (배전계통의 전압안정화를 위한 선로전압조정장치와 전지전력저장장치의 협조제어 알고리즘에 관한 연구)

  • Kim, Byung-Ki;Wang, Jong-Yong;Park, Jea-Bum;Choi, Sung-Sik;Ryu, Kyung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.269-278
    • /
    • 2016
  • In order to maintain customer voltages within allowable limit($220{\pm}13V$) as much as possible, tap operation strategy of SVR(Step Voltage Regulator) installed in distribution system is very important, considering the scheduled delay time(30 sec) of SVR. However, the compensation of BESS(Battery Energy Storage System) during the delay time of SVR is being required because the customer voltages in distribution system interconnected with PV(Photovoltaic) system have a difficultly to be kept within allowable limit. Therefore, this paper presents the optimal voltage stabilization method in distribution system by using coordination operation algorithm between BESS and SVR. It is confirmed that customer voltage in distribution system can be maintained within allowable limit($220{\pm}13V$).

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.