• Title/Summary/Keyword: 전동 휠

Search Result 44, Processing Time 0.021 seconds

A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor (초전도 부상 플라이휠 에너지 저장시스템의 구동을 위한 전동/발전기)

  • Go, Chang-Seop;Yeon, Je-Uk;Choe, Jae-Ho;Jeong, Hwan-Myeong;Hong, Gye-Won;Lee, Ho-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.411-420
    • /
    • 2000
  • The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy system) is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy. In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal current for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment.

  • PDF

Effect of Design variables of Rail Surface Measuring Device on Acoustic Roughness and Spectral Analysis (레일표면 측정장치의 설계변수가 음향조도 스펙트럼 분석에 미치는 영향)

  • Jeong, Wootae;Jeon, Seungwoo;Jeong, Dahae;Choi, Han Shin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.440-447
    • /
    • 2017
  • Spectrum level for the acoustic roughness of wheels and rail surface should be periodically maintained under the limitation of ISO to reduce rolling noise of railway vehicles. Thus, in maintaining railway track, displacement sensor-based measuring devices are broadly used to measure the surface roughness and to perform spectral analysis. However, these measuring devices cause unexpected measuring errors since the displacement sensors are fixed at moving platforms and the main frame produces pitching motion during measurement. To increase the accuracy of the measured values, this paper has investigated the effects of design variables such as wheel base, additional wheels, and elastic deformation of wheels on the surface roughness and acoustic roughness spectrum.

Research of Usability Test on Single-Seater Rider Robot using Omni Wheel Drive (옴니 휠 드라이브를 이용한 1인승 탑승 로봇의 사용성 평가 연구)

  • Rhee, Kun-Min;Kim, Dong-Ok
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2016
  • By developing rider robot using omni wheel drive, a usability test for 6 people was conducted after finding out inconvenient factors and ways of improvement. The results of this research are as follows. First, we researched inconvenient factors captured by object of experiment using a rider robot who is living in the dormitory. It showed that the disabled showing 1.6 of satisfaction degree felt more inconvenient for normal people showing 4 of satisfaction degree. It was found that the height of seats is 10 centimeters higher, which caused inconvenience for moving. Second, each of the disabled and normal people showed 2.33 and 2.62 of satisfaction degree below the average for seats, back of a seat, armrest, footrest, security belts. However, for the revised design both of them showed 3.5 of satisfaction degree over the average. Third, most people felt this robot is quite expensive and said they would purchase it if subsidized by the government. Therefore, based on inconvenient factors and ways of improvement found in this research, further study needs to be conducted so as to improve the quality of life of the disabled.

Design of the Power Assist Controller for the In-Wheel Type Smart Wheelchair (인휠형 스마트 휠체어를 위한 힘 보조 제어기 설계)

  • Kong, Jung-Shik;Baek, Seung-Yub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • This paper presents the design of the power-assisted controller for the in-wheel type smart wheelchair by using torque estimation that is predicted by relationship between input voltage and output wheel angular velocity. Nowadays, interest of the moving assistant aids is increased according to the increase in population of the elderly and the handicapped person. However some of the moving assistant aids have problems. For example, manual wheelchair has difficulty moving at the slope, because users lack the muscular strength of their arm. In electric wheelchair case, users should be weak by being decreased muscles of upper body. To overcome these problems, power-assisted electric wheelchair are proposed. Most of the power-assisted electric wheelchair have the special rims that can measure the user's power. In here, the rims have to be designed to install the sensors to measure user's power. In this paper, we don't design the rim to measure the man power. To predict the man power, we propose a control algorithm of the in-wheeled electric wheelchair by using torque estimation from the wheel. First, we measure the wheel velocity and voltage at the in-wheel electric wheelchair. And then we extract driving will forces by using proposed mathematical model. Also they are applied at the controller as the control input, we verify to be able to control in-wheel type smart wheelchair by using simulation.