• Title/Summary/Keyword: 전도성 직물 재료

Search Result 10, Processing Time 0.031 seconds

Preparation and Physical Properties of Conductive Poly(acrylonitrile) Fabrics Containing Polypyrrole (폴리피롤을 이용한 전도성 아크릴 직물의 제조 및 물성)

  • 이영관;조재춘
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.276-280
    • /
    • 2000
  • A conductive poly(acrylonitrile)/polypyrrole composite fabric was prepared. A conductive composite was prepared by the impregnation of PAN fabric into a mixed solution of pyrrole and oxidant in order to induce the in-situ polymerization of a conducting polymer into the matrix fabric. In the composite formation, the reaction condition was optimized to achieve the best properties, and the effect of the externally-added arylsulfonate dopants on the physical properties was examined. As a result, the best properties of electrical conductivity, thermal stability, and fastness to washing, was observed in the composite containing an antraquinonesulfonate (AQSA) dopant.

  • PDF

The preparation of electroconductive Nylon/Spandex stretch fabric (I) - Changes of conductivity with extension (전도성 Nylon/Spandex 스트레치 직물의 제조(I) - 신장에 따른 전도도의 변화)

  • 박현진;오경화;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.314-315
    • /
    • 2001
  • 전기 전도성 고분자는 폴리 아세틸렌을 적절한 electron withdrawing group이나 electron donating group을 이용하여 도핑하면 전도도의 증가를 가져온다는 보고 이래로 활발하게 연구되어져 왔다. 그 중에서 폴리피롤은 높은 전도도와 산화안정성, 인체에 무해한 특성 때문에 여러 분야에 응용되고 있으며 분자전자장치나 고체 배터리의 전극, 축전기의 고체 전해질, 전자파 차폐 재료, ion센서, 위장막의 제조 등의 용도전개 잠재력이 무궁하다. (중략)

  • PDF

An Exploratory Study on the Structure of Fabric of Increasing Triboelectric Energy Harvesting by Applying Three-dimensional Embroidery Technique (입체 자수 기법을 적용한 마찰 에너지 수확 증대형 직물 구조의 탐색)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Kim, Min-Ook;Kim, Jong-Baeg;Kim, Shin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to investigate three-dimensional embroidery techniques for creating conductive fabric materials. Such techniques can increase the efficiency of energy harvesting by increasing the fabric's area during rubbing and brushing. We also investigate the fabric structure of the triboelectric energy harvesting type. Two experiments were conducted for this purpose. In Experiment I, the three-dimensional embroidery technique(satin technique, file technique) and the conductive fabric material(copper-based MPF, nickel-based MPF) were selected as the main variables affecting the efficiency of triboelectric energy harvesting from the human body. Four samples were fabricated according to a combination of two variables. In Experiment II, the harvesters fabricated by the three-dimensional embroidery method showing the highest efficiency were subjected to brushing processes and the voltages generated after processing were analyzed. As a result, in both conductive fabric materials, the pile embroidery fabric structure showed a higher efficiency than the satin structure. These results show the triboelectric energy harvesting principle, which is proportional to the charge density and the generated voltage. It can be seen that the structure of pile embroidery fabric with a large friction area is advantageous for increasing efficiency compared to satin embroidery-fabric structure with a relatively small friction area. Moreover, the energy harvesting efficiency after brushing was higher than that before processing due to the increased friction area, and it was found that the brushing method is advantageous for increasing the triboelectric-energy harvest.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

A Novel Frequency Selective Surface: Frequency Selective Fabric Composite (새로운 주파수 선택 표면: 주파수 선택적인 직물 복합 재료)

  • Lee, Sang-Eui;Kim, Chun-Gon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.920-928
    • /
    • 2006
  • Fiber-reinforced composites transmitting microwaves of certain frequencies or bands were proposed. These frequency selective fabric composites(FSFCs) are fabricated by weaving carbon fibers and dielectric fibers that build periodic patterns. Design parameters affecting the electromagnetic characteristics of FSFCs were widely discussed, Then the electromagnetic characteristics of a fabricated plain-weave FSEC were investigated with regard to the electrical conductivities of carbon roving, the fiber undulation, and the aperture-to-cell ratio, for the electrical conductivities, its dependence on frequency as well as on the fiber volume fraction of carbon roving was taken into account. Constituent material properties and the fiber undulation had little effect on the EM properties of the fabricated FSFC, while the aperture-to-cell ratio made a profound effect on them.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

A Study on Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조를 갖는 전자기파 흡수체에 관한 연구)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kim, Chun-Gon;Lee, In;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.64-71
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band ($8.2{\sim}12.4GHz$) frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane(PU) foams containing multi-walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

Study on Micro Dried Bio-potential Electrodes Using Conductive Epoxy on Textile Fabrics (전도성 에폭시를 이용한 직물 위에 구현된 건식 생체전위 전극의 연구)

  • Cha, Doo-Yeol;Jung, Jung-Mo;Kim, Deok-Su;Yang, Hee-Jun;Choi, Kyo-Sang;Choi, Jong-Myong;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • In this paper, micro dried bio-potential electrodes are demonstrated for sEMG (surface ElectroMyoGraphic) signal measurement using conductive epoxy on the textile fabric. Micro dried bio-potential electrodes on the textile fabric substrate have several advantages over the conventional wet/dry electrodes such as good feeling of wearing, possibility of extended-wearing due to the good ventilation. Also these electrodes on the textile fabric can easily apply to the curved skin surface. These electrodes are fabricated by the screen-printing process with the size of $1mm{\times}10mm$ and the resultant resistance of these electrodes have the average value of $0.4{\Omega}$. The conventional silver chloride electrode shows the average value of $0.3{\Omega}$. However, the electrode on the textile fabric are able to measure the sEMG signal without feeling of difference and this electrode shows the lower resistance of $1.03{\Omega}$ than conventional silver chloride electrode with $2.8{\Omega}$ in the condition of the very sharp curve surface (the radius of curvature is 40 mm).

Resistive E-band Textile Strain Sensor Signal Processing and Analysis Using Programming Noise Filtering Methods (프로그래밍 노이즈 필터링 방법에 의한 저항 방식 E-밴드 텍스타일 스트레인 센서 신호해석)

  • Kim, Seung-Jeon;Kim, Sang-Un;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2022
  • Interest in bio-signal monitoring of wearable devices is increasing significantly as the next generation needs to develop new devices to dominate the global market of the information and communication technology industry. Accordingly, this research developed a resistive textile strain sensor through a wetting process in a single-wall carbon nanotube dispersion solution using an E-Band with low hysteresis. To measure the resistance signal in the E-Band to which electrical conductivity is applied, a universal material tester, an Arduino, and LCR meters that are microcontroller units were used to measure the resistance change according to the tensile change. To effectively handle various noises generated due to the characteristics of the fabric textile strain sensor, the filter performance of the sensor was evaluated using the moving average filter, Savitsky-Golay filter, and intermediate filters of signal processing. As a result, the reliability of the filtering result of the moving average filter was at least 89.82% with a maximum of 97.87%, and moving average filtering was suitable as the noise filtering method of the textile strain sensor.