• Title/Summary/Keyword: 전대상회

Search Result 9, Processing Time 0.033 seconds

Quantification of Brain Images Using Korean Standard Templates and Structural and Cytoarchitectonic Probabilistic Maps (한국인 뇌 표준판과 해부학적 및 세포구축학적 확률뇌지도를 이용한 뇌영상 정량화)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Yu-Kyeong;Kim, Jin-Su;Lee, Jong-Min;Koo, Bang-Bon;Kim, Jae-Jin;Kwon, Jun-Soo;Yoo, Tae-Woo;Chang, Ki-Hyun;Kim, Sun-I.;Kang, Hye-Jin;Kang, Eun-Joo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.241-252
    • /
    • 2004
  • Purpose: Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Materials and Methods: Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Results: Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior'/'posterior' was decreased by 3.1% per decade of age ($P<10^{-11}$, r=0.81) and 'caudal anterior'/'posterior' was decreased by 1.7% ($P<10^{-8}$, r=0.72). Conclusion: Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis of brain image of Korean people since the difference in shape of the hemispheres and the sulcal pattern of brain relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques.

Brain Activation Associated with Set Size During Random Number Generation (무선열 생성과제에서 반응후보 수에 따른 뇌활성화 양상)

  • Lee, Byeong-Taek;Kim, Cheong-Tag
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.57-74
    • /
    • 2008
  • This study aimed to investigate the preferential brain activations involed in the set size during random number generation (RNG). The BNG condition gave more increased activations in the anterior cingulate cortex (ACC), inferior frontal gyrus (IFG), inferior parietal lobule (IPL), and superior temporal gyrus (STG) than the simple counting condition, which was a control rendition. When the activations were compared by the small set size condition versus the large set size condition, broad areas covering tempore-occipital network, ACC, and postcentral gyrus were more highly activated in the small set size condition than in the large set size condition, while responses of areas including medial frontal gyrus, superior parietal lobule, and lingual gyrus were more increased in the large set size condition than in the small set size condition. The capacity hypothesis of working memory fails to explain the results. On the contrary, strategy selection hypothesis seems to explain the current observations properly.

  • PDF

Neural Basis Involved in the Interference Effects During Dual Task: Interaction Between Calculation and Memory Retrieval (이중과제 수행시의 간섭효과에 수반되는 신경기반: 산술연산과 기억인출간의 상호작용)

  • Lee, Byeong-Taek;Lee, Kyoung-Min
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.159-178
    • /
    • 2007
  • Lee & Kang (2002) showed that simultaneous phonological rehearsal significantly delayed the performance of multiplication but not subtraction, whereas holding an image in the memory delayed subtraction but not multiplication. This result indicated that arithmetic function is related to working memory in a subsystem-specific manner. The aim of the current study was to examine the neural correlates of previous finding using fMRI. For this goal, dual task conditions that required suppression or no suppression were manipulated. In general, several areas were more activated in the interference conditions than in the less interference conditions, although both conditions were dual condition. More important finding is that the specific areas activated in the phonological suppression rendition were right inferior frontal gyrus, left angular, and inferior parietal lobule, while the areas activated in the other condition were mainly in the right superior temporal gyrus and anterior cingulate gyrus. Furthermore, the areas activated in the phonological or visual less suppression condition were right medial frontal gyrus, left middle frontal gyrus, and bilateral medial frontal gyri, anterior cingulate cortices, and parahippocampal gyri, respectively. These results revealed that sharing the processing code invokes interference, and its neural basis.

  • PDF

Neural Substrates of Posttraumatic Stress Disorder : Functional Magnetic Resonance Imaging Study Using Negative Priming Task (외상 후 스트레스 장애의 신경기반 : 부적점화과제와 기능자기공명영상 연구)

  • Lee, Byeong-Taek;Ryu, Jeong;Lee, Dong Hoon;Sohn, Myeong-Ho;Kang, Nae Hee;Ham, Byung-Joo;Choi, Nam Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • Objectives : Posttraumatic stress disorder(PTSD) has been primarily associated with emotional problems. Recently, however, the impact of PTSD on cognitive processes has interested a growing number of researchers. The current study is aimed at investigating the cognitive aspects of PTSD at both behavioral and neurological levels. Methods : We recruited individuals with PTSD who survived the Daegu subway explosion in 2003 as well as non-PTSD individuals as a control group. To evaluate the inhibitory processes and the neural mechanisms, we had these individuals perform the negative priming task simultaneously with functional MRI scanning. Results : Behaviorally, the negative priming effect was intact in the control group but was not evident in the PTSD group. In the imaging results, only the PTSD group showed the negative priming effect (i.e., increased activation of the negative priming condition as opposed to the neutral condition) in the dorsolateral prefrontal cortex, anterior cingulate cortex, and inferior temporal gyrus. The PTSD group also showed increased activity for the positive priming condition as opposed to the neutral condition in the claustrum. These results confirm and extend the previous findings that the integrity of the ACC is compromised in the trauma survivors due to disrupted white matter tract. Conclusions : The current results suggest that deteriorated performance of the PTSD group may be due to the functional problem as well as the structural abnormalities.

  • PDF

Asymmetric effect of aging on cognitive control processes: An ERP study (인지적 통제 과정에 미치는 노화의 비대칭적 영향: ERP 연구)

  • Jin, Youngsun;Kim, Hyunok
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.245-265
    • /
    • 2017
  • Recently, studies on cognitive control revealed that the optimal level of control is determined on the basis of reward and cost. The value of reward can be subjective and therefore, the optimal control strength can vary accordingly. The inconsistent effect of aging on cognitive control can be the result of flexible adjustment of control signal strength made by the older subjects. In other words, the elderly people maintains the ability to set the optimal level of control, which is known as the function of the dorsal anterior cingulate cortex. On the other hand, the age-related decline in cognitive control is obvious in rule maintenance and inhibition, which has to do with the function of lateral prefrontal cortex. In this study, we had young and old adults perform go-no go task and compared the behavioral and neural results for different reward conditions. Both age groups showed the best performance and the largest ERN amplitude when the reward was most appealing to them. And there was no age effect in ERN amplitude even though older adults' d' and accuracy was inferior to younger participants. These findings suggest that the effect aging on different cognitive control processes can be asymmetric.

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Exploration of Neurophysiological Mechanisms underlying Action Performance Changes caused by Semantic Congruency between Perceived Action Verbs and Current Actions (지각된 행위동사와 현재 행위의 의미 일치성에 따른 행위 수행 변화의 신경생리학적 기전 탐색)

  • Rha, Younghyoun;Jeong, Myung Yung;Kwak, Jarang;Lee, Donghoon
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.573-597
    • /
    • 2016
  • Recent fMRI and EEG research for neural representations of action concepts insist that processing of action concepts evoke the simulation of sensory-motor information. Moreover, there are several behavioral studies showing that understanding of action verbs or sentences describing actions interfere or facilitate current action performance. However, it is unclear that online interaction between processing of action concepts and current action is based on the simulation of sensory-motor information, or other neural mechanisms. The present research aims to explore the underlying neural mechanism that how the perception of action language influence the performance of current action using high-spacial temporal resolution EEG and multiple source analysis techniques. For this, participants were asked to perform a cued-motor reaction task in which button-pressing hand action and pedal-stepping foot action were required according to the color of the cue, and we presented auditorily action verbs describing the responding actions (i.e., /press/, /step/, /stop/) just before the color cue and examined the interaction effect from the semantic congruency between the action verbs and the current action. Behavioral results revealed consistently a facilitatory effect when action verbs and responding actions were semantically congruent in both button-pressing and pedal-stepping actions, and an inhibitory effect when semantically incongruent in the button-pressing action condition. In the results of EEG source waveform analysis, the semantic congruency effects between action verbs and the responding actions were observed in the Wernicke's area during the perception of action verbs, in the anterior cingulate gyrus and the supplementary motor area (SMA) at the time when the motor-cue was presented, and in the SMA and primary motor cortex (M1) during action execution stage. Based on the current findings, we argue that perceived action verbs evoke the facilitation/inhibition effect by influencing the expectation and preparation stage of following actions rather than the directly activating the particular motor cortex. Finally we discussed the implication on the neural representation of action concepts and methodological limitations of the current research.

Neural Bases of Empathy in Competitive vs. non-Competitive situation (경쟁과 비경쟁 상황에서 공감의 신경학적 기제)

  • Hwang, Su-Young;Yoon, Mi-Sun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.441-467
    • /
    • 2016
  • This fMRI study is aim to investigate effects of competitive environment in cognitive empathic process in human brain. Empathy is known as a crucial factor for human's adaptive behavior in aspects of social cognition and it is almost automatic process, on the other hand competitive situation is psychologically devastated environment to win someone for getting rewards. We hypnotized that reading and understanding of other person's mind are a specific characteristic related to survival evolutionarily, however competition would have an effect on the empathic cognitive process because of mechanisms of competition. To manipulate the competitive atmosphere, one researcher took a role of competitor against participants and they were instructed to get monetary rewards when their performance was better than a competitor. 21 participants(9 males and 12 females) performed to judge the emotional valence of the empathic task consisted of illustrated images with various situation could be experienced in real world as on $1^{st}$ person perspective in both competitive and non-competitive condition, and did same performance with objects stimulus in control condition. In order to examine the competition effects on empathic process,, hemodynamic response were obtained during fMRI session and the imaging data were analyzed to identify brain regions where responses to each condition across the two consecutive runs. Participants' reaction time in competitive condition was faster statistically significant than non-competitive one. Activation for competitive condition increased in the following areas: ACC, mPFC, SMG, thalamus extended caudate and Nacc, parahippocampal gyrus, and for non-competitive condition increased paracingulate gyrus, temporal pole, vmPFC, superior occipital gyrus. As a result of regression analysis using empathic scores as covariance, the rSMG, IFG, fusiform gyrus, thalamus, putamen were correlated with higher empathic levels, and TPJ were correlated with lower empathic scores. We suggest that these observations could mean competitive environment have an effect on neural base of cognitive empathic process.

Metabolic Correlates of Temperament Factors of Personality (기질적 성격요인과 국소 뇌포도당대사의 상관연구: 성별에 따른 차이)

  • Park, Hyun-Soo;Cho, Sang-Soo;Yoon, Eun-Jin;Bang, Seong-Ae;Kim, Yu-Kyeong;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.280-290
    • /
    • 2007
  • Purpose: Gender differences in personality are considered to have biological bases. In an attempt to understand the gender differences of personality on neurobiological bases, we conducted correlation analyses between regional brain glucose metabolism and temperament factors of personality in males and females. Materials and Methods: Thirty-six healthy right-handed volunteers (18 males, 33.8$\pm$17.6 y; 18 females, 36.2$\pm$20.4 y) underwent FDG PET at resting state. Three temperament factors of personality (novelty seeking (NS), harm avoidance (HA), reward dependence (RD)) were assessed using Cloninger's 240-item Temperament and Character Inventory (TCD within 10 days of FOG PET scan. Correlation between regional glucose metabolism and each temperament factor was tested using SPM2. Results: In males, a significant negative correlation between NS score and glucose metabolism was observed in the bilateral superior temporal gyri, the hippocampus and the insula, while it was found in the bilateral middle frontal gyri, the right superior temporal gyrus and the left cingulate cortex and the putamen in females. A positive HA correlation was found in the right midbrain and the left cingulate gyrus in males, but in the bilateral basal ganglia in females. A negative RD correlation was observed in the right middle frontal and the left middle temporal gyri in males, while the correlation was found in the bilateral middle frontal gyri and the right basal ganglia and the superior temporal gyrus in females. Conclusion: These data demonstrate different cortical and subcortical metabolic correlates of temperament factors of personality between males and females. These results may help understand biological substrate of gender differences in personality and susceptibility to neuropsychiatric illnesses.