• Title/Summary/Keyword: 전달압력

Search Result 438, Processing Time 0.026 seconds

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Modeling of Liquid Hold-up in Fixed-bed Reactor for Fischer-Tropsch Synthesis (고정층 Fischer-Tropsch 반응기의 액상 왁스 정체 현상 모델링)

  • Park, Chansaem;Jung, Ikhwan;Park, Seongho;Na, Jonggeol;Kshetrimayum, Krishnadash;Han, Chonghun;Lee, Jong Yeol;Jung, Jongtae
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.63-67
    • /
    • 2014
  • Fischer-Tropsch synthesis mainly produces a wax which is a viscous liquid for long carbon chain. When a catalytic fixed-bed reactor is used for Fischer-Tropsch synthesis, the wax generated on a catalyst surface can keep adsorbing on the catalyst surface. This liquid hold-up causes significant pressure drop and clogging problems through the reactor. Thus, the model for liquid hold-up is required to design the size of reactor and catalyst particles. In this study, the liquid hold-up model considering structural and operational conditions was proposed based on empirical equations for convective mass transfer between the syngas flow and the wax-adsorbed catalyst. The developed model was validated by comparing with the experimental data from Knochen's work (2010). The influence of reactor length and coross section on the wax hold-up in reactor were analyzed and the optimal reactor size were proposed.

Development of Frequency Weighing Sensor and Single Crystal Growth (새로운 무게센서 재발과 단결정성장(1))

  • Jang Y.N.;Sung N.H.;Chae S.C.;Bae I.K.;Kim I.J.
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • A new weighing sensor for the automatic diameter control system of the crystal growth is developed in this study. This weighing sensor measures the frequency of the vibrating element which is lineally changing with respect to weight. The signal and the power of this system are transmitted without any physical contact, so that this sensor offers high accuracy and resolution. This system consists of a string, a sinusoidal wave generator, an automatic amplification adjusting circuit, signal transformers and a PCB. 4 kinds of programs are developed for checking DAC, weight calibration and controlling growth process. The measurements of the standard deviation and the resolution show $\pm0.10g$(measured at every second) and $5{\times}10^{-5}$, respectively, This weighing sensor is effective under high pres-sure of 200 atm, high temperature and vacuum condition. The weighing system can control the temperature in the accuracy of $\pm0.025^{\circ}C$ with the 'signal divider'. The optical quality single crystals of $(YGd)_3Sc_2Ga_3O_{12},\;Er-Y_3Sc_2Al_3O_{12},\;and\;Bi_{12}GeO_{20}$ have been grown by Czo-chralski method using this auto-diameter control system.

  • PDF

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

An Experimental Study for the Effect of Operating Condition of the Air Handling Unit on the Performance of Humidifying Elements (공조기 운전 조건이 가습 소자의 성능에 미치는 영향에 대한 실험 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.326-331
    • /
    • 2018
  • Evaporative humidification using a humidifying element is used widely for the humidification of a building or a data center. The performance of a humidifying element is commonly expressed as the humidification efficiency, which is assumed to be independent of the air temperature or humidity. To verify this assumption, a series of tests were conducted under two air conditions - data center ($25^{\circ}C$ DBT, $15^{\circ}C$ WBT) and commercial building ($35^{\circ}C$ DBT, $21^{\circ}C$ WBT) - using humidifying elements made from cellulose/PET and changing the frontal air velocity from 1.0 m/s to 4.5 m/s. Three samples having a 100 mm, 200 mm, or 300 mm depth were tested. The results showed that the humidification efficiency is dependent on the air condition. Indeed, even dehumidification occurred at the inlet of the humidifying element at the air condition of commercial building. This suggests that a proper thermal model should account for the inlet area, where the amount of moisture transfer may be different from the other part of the humidification element. As the depth of the element increased from 100 mm to 200 mm, the humidification efficiency increased by 29%. With further increases to 300 mm, it increased by 42%. On the other hand, the pressure drop also increased by 47% and 86%.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.