• Title/Summary/Keyword: 전단 좌굴

Search Result 168, Processing Time 0.025 seconds

Analysis on the Elastic Shear Buckling Characteristics of Corrugated Steel Plate in Accordance with Corrugation Shape (형상에 따른 주름강판의 탄성전단좌굴 특성 및 경향성 분석 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.11-20
    • /
    • 2014
  • This paper aims at comparing and analyzing shear buckling characteristics between sinusoidal corrugation shape and trapezoidal one. For this, I adopted the equal-length trapezoidal corrugation and sinusoidal one for the analytical models, and analyzed their shear buckling characteristics through linear buckling analysis and on its theory. Generally, the shear buckling shapes of corrugated steel plates are classified into local buckling, global buckling, and interactive buckling from the two buckling modes. Sinusoidal corrugation shape, unlike trapezoidal corrugation, does not have flat sides, which causes another tendency in shear buckling mode. Especially, the changes and different aspects of shear buckling on the boundary between local buckling and global buckling appear in different corrugation shapes. According to the analysis results, interactive buckling mode appeared on the boundary of local buckling and global bucking in trapezoidal corrugation. However, in the case of corrugated steel plates with sinusoidal configuration, interactive buckling mode appeared in the part where global bucking takes place. Besides, trapezoidal shapes are of advantages on shear buckling resistance in the local buckling section, and so are sinusoidal shapes in the global buckling section.

Shear Design of Trapezoidally Corrugated Steel Webs (제형 파형강판 복부판의 전단 설계)

  • Moon, Jiho;Yi, Jongwon;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.497-505
    • /
    • 2008
  • Corrugated steel webs resist only shear force because of the accordion effects. The shear force in the web can cause three different buckling mode: local, global, and interactive shear buckling modes. The shear behavior of the corrugated steel webs have been investigated by several researchers. However, shear buckling behavior of the corrugated webs are not clearly explained yet. And, it lead the conservative design. This paper presents shear strength of trapezoidally corrugated steel webs. A series of the tests were also conducted to verified proposed shear strength. Firstly, local, global, and interactive shear buckling equations provided by previous researchers were rearranged as a simple form considering the profiles of the existing bridges with corrugated steel webs. And, global and interactive shear buckling coefficient, and shear buckling parameter for corrugated webs were suggested in this study. Inelastic buckling strength can be determined from buckling curves based on the proposed shear buckling parameter. From the test results of this study and those of previous researchers, it can be found that suggested shear strength provides good estimation of those of trapezoidally corrugated steel webs.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Elastic Shear Buckling of Curved Web Panels (강곡선 1형보 복부판의 탄성 전단좌굴)

  • 김재석;김종헌;강영종;한택희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • The horizontally curved bridges have been used to connect bridges and roads. Until 1960s, they had been constructed with straight girders, called 'kinked girder bridges', which requires much cost and time-consuming construction of substructure. In case of using curved girders, practiced later, they would have many advantages such as reduction in the total construction cost and time, and ability to make aesthetic bridges. In designing plate girder bridges, it is necessary to determine the spacings between vertical stiffeners and the allowable shear stresses based on shear buckling capacity because it plays a key role in preventing the premature local shear buckling. Compared with the straight web, the critical shear buckling stresses of curved web panels vary with both aspect ratio and curvature coefficient. For designing curved web panels, a simplified formula and shear buckling coefficients were proposed by parametric models with F.E.M in this study.

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

Evaluation and Test of Slenderness Ratio Effect on Buckling Characteristics of Thin Cylindrical Structures Subjecting the Shear Loads (전단하중을 받는 얇은 원통구조물의 세장비에 따른 좌굴특성 평가 및 시험)

  • 구경회;김종범;이재한
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.535-543
    • /
    • 2002
  • The purpose of this paper is to investigate the slenderness ratio effect on buckling characteristics of thin cylindrical structures subjecting the shear loads in detail. To do this, the buckling strength evaluations were carried out with using the evaluation formulae proposed by J. Okada. From the results of the buckling strength evaluations, the three types of staled cylindrical test specimen, which have L/R=3.1, 1.6, and 1.0, are determined for the numerical analyses and tests. From results, target slenderness ratio over L/R=3 results in dominant bending buckling mode, smaller slenderness ratio under L/R=1 results in dominant shear buckling mode, and near L/R=1.6 region shows the mixed buckling mode which has the bending and shear buckling mode simultaneously. Most results of buckling characteristics obtained by the numerical analyses and the evaluation formulae we in good agreement with those of tests.

Analysis of Shear Buckling Stresses for Steel Pipes by Detailed Parametric Study (매개변수해석을 통한 원형 강관의 전단좌굴응력 상세분석)

  • Mha, Ho-Seong;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.579-585
    • /
    • 2013
  • Shear buckling stresses of steel pipes due to the lateral forces have been analyzed via parametric analysis. Detailed FEM models are prepared, and steel types, thickness, radii and length of steel pipes are selected as parameters. STK400, STK490 and SM570 are used and the thickness of pipe is 2mm and 40mm. The radii(R) and lengths(L) are determined based on the values satisfying the following relationship as R/t=20~400 and L/R=1~3. The shear buckling stresses decrease for all types of considered steels as R/t increase from 20 to 200. High strength steels are more sensitive to R/t, and also have an bigger effect on shear buckling stresses than low strength steels. It is found that shear buckling stresses decrease as L/R increases, showing that the steel pipes become weak as the length of the steel pipe increases.

An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates (정현파형 주름강판의 전단좌굴특성 분석)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • Corrugated steel plates are made by fabricating thin steel plates to have trapezoidal or sinusoidal corrugation, and the corrugated plates are able to maintain high out-of-plane rigidity even when they are used instead of thick flat plates. Also, corrugated steel plates have almost no axial rigidity due to the accordion effect. Thus, if they are applied to the webs of plate girders, designing can be easily conducted so that the webs bear only shear stresses. However, unlike flat plates, the shear buckling of corrugated steel plates has very complex characteristics where buckling occurs due to the interaction of local and global buckling, besides local buckling and global buckling. For the investigation of the cause and characteristics of this interactive buckling, studies on sinusoidal corrugated steel plates are fewer than studies on trapezoidal corrugated steel plates. Therefore, in this study, the shear buckling characteristics of sinusoidal corrugated steel plates and the occurrence pattern of interactive buckling were investigated. For the calculation of shear buckling strength, a finite element program was used, and the analysis results were compared with the exact solution. In addition, the characteristics of buckling stress change and the change of buckling mode shape depending on corrugation thickness and shape parameter were analyzed, and by comparing these results with the results of a theoretical equation, the timing of buckling mode change was analyzed.

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.