• Title/Summary/Keyword: 전단 에너지

Search Result 532, Processing Time 0.03 seconds

Experimental Study on Bond Behavior of Retrofit Materials by Bond-Shear Test (부착전단 실험에 의한 보강재료의 부착거동 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Cho, Yun-Gu;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.45-52
    • /
    • 2012
  • A variety of retrofit material such as CFRP, GFRP, and PolyUrea have been developed for strengthening RC structures and infrastructures. From previously reported research results, the capacity of strengthened concrete structures was dictated by the behavior of the interface between retrofit material and concrete. In this study, bond-shear test was carried out to estimate the bond behavior between retrofit material and concrete using a newly developed test grip. The test results of load and slip relation and energy absorption capacity of each retrofit material were obtained. These test results will provide basic information for retrofit material selection to achieve target retrofit performance.

Strength Evaluation for Doubly Reinforced Composite Beams with Steel Fiber Concretes and Steel Angles (강섬유 콘크리트와 형강을 사용한 합성 복근보의 강도 특성)

  • Oh, Young-Hun;Nam, Young-Gil;Lee, Jae-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.755-763
    • /
    • 2008
  • The purpose of this study is to investigate the structural performance of doubly reinforced composite beams with steel fiber concretes and steel angles. For this purpose, total 6 specimens whose variables are shear span-to-depth ratio, existence of shear reinforcement, and shear reinforcement details, are made and tested. All specimens are constructed of steel fiber concretes with specified compressive strength of 30 MPa and steel fiber volumn content of 1%. From the experimental results, structural performance of doubly reinforced composite beams are evaluated in terms of strength, stiffness, ductility, and energy absorbing capacity. For the better structural performance, it is recommended that the composite beam is designed with diagonal shear reinforcement.

Characteristics of Flexuarl-Shear Behavior of Beam Using Demonstrated CFRP Rod (국내 시범 생산 CFRP rod를 적용한 보 부재의 휨-전단 특성)

  • Choi, So-Yoeng;Kim, Il-Sun;Choi, Myoung-Sung;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.86-94
    • /
    • 2022
  • Replacement of FRP rod as steel reinforcement has been attracted significantly to prevent the degradation of the concrete structure due to corrosion. So, the technology development to extend the structure's service life by improving FRP properties has been proceeded worldwide. Accordingly, it is necessary to develop Korea's CFRP rod and CFRP grid, including the manufacturing techniques to improve the properties of high-strength and high-stiffness. Moreover, the research should be conducted to evaluate the structural behavior of the beams using the CFRP rod or grid. This study investigates the flexural and shear behavior of reinforced concrete beam using demonstrated CFRP rod as reinforcement according to the reinforcement ratio and shear span to depth ratio. From the results, when the reinforcement ratio is out of a specific range, it is seemed that the effect on performance improvement of the beam using CFRP rod is cancelled or not significant. Meanwhile, when the CFRP rod was used as reinforcement, the possibility of shear failure occurred, even steel stirrups were installed in the beam with CFRP rod as tensile reinforcement according to the Korean Design Standard. Therefore, when the CFRP rod is used as tensile reinforcement in a beam, it should be prepared that a specific limitation of reinforcement ratio and an investigation against shear failure. Also, the ductility of the beam using the CFRP rod is determined by the deformation energy evaluation method. So, the ductility should be investigated by applying the deformation energy evaluation method that reflects the structural behavior of the beam.

Dispersion Characteristics of Spilled Oil by Waves and Velocity Shear (파랑과 속도전단에 의한 유출유의 분산 특성)

  • Seol Dong-Guan;Ryu Cheong-Ro;Kim Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.18-26
    • /
    • 1998
  • The major interest of this paper is how the spilled oil over the sea is dispersed into water column especially under the shear and turbulence such as breaking wave. Two hydraulic experiments were conducted to investigate the oil stick break-up characteristics into small and large droplets under the variation of velocity shear and breaking waves. From the experiments in the shear generator and the wave flume, small droplets which have diameters of tens to hundreds of micrometers were uniformly distributed throughout the whole control volume as time goes by. In addition, it can be seen that the weathered spilled oil has a different break-up mechanism from fresh spilled oil.

  • PDF

Analysis of Shear Properties from the Numerical Shear Test on Rock Joints with PFC2D (PFC2D를 이용한 암반 절리의 수치전단시험으로부터 전단 특성 분석)

  • Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.357-366
    • /
    • 2021
  • Shear behavior dependent on the shape and roughness of rock joints can greatly influence the stability of the ground and rock structures. The efficient design of rock structures requires understanding of the shear behavior due to joints and accurate calculation of the shear strength. This work reports numerical shear tests using PFC2D on No. 1 (JCR-1), with smooth joints, and No. 7 (JRC-7) and No. 9 (JRC-9), with relatively rough joints, for the 10 shapes of standard joint profiles proposed by Barton and Choubey (1977). The aim was to investigate the shear behavior of rock joints with respect to their roughness. The results show the maximum shear stress to be about 3.2 to 5.0 times greater in the rougher JRC-7 and JRC-9 joints than in smoother JRC-1. The maximum shear displacement was approximately 4.1 to 5.8 times greater at the first normal stress than at the second. The rougher joints showed friction angles of the rock joints that were approximately 1.8 to 3.9 times greater than that in the smooth joint. Overall, increasing the rock joint roughness increased the maximum shear stress and friction angle.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates (적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선)

  • Kim, Jun-Sik;Han, Jang-Woo;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2011
  • In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

Evaluation of Shear Performance of RC Web Opening Beams According to the Shape of Web Opening Reinforcement (유공보강근의 형상에 따른 철근콘크리트 유공 보의 전단성능평가)

  • Kim, Min-Jun;Lee, Bum-Sik;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.76-85
    • /
    • 2021
  • In this study, a shear experiment was conducted to evaluate the structural performance of RC members according to the shape of web opening reinforcement. For a total of 4 RC members specimens, the main variables were with or without web openings, with or without web opening reinforcement, and shape of web opening reinforcement, respectively. In this study, a spiral web opening reinforcement with a mixture of square and octagonal shapes was proposed and compared with the existing band type. As a result of the experiment, the specimen with the proposed web opening reinforcement showed that the shear capacity and the energy dissipation capacity increased compared to other specimens. It was confirmed that the web opening reinforcement proposed in this study had a positive effect on the shear performance and crack control of RC members with web openings.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

An Evaluation of Water Use Efficiency and Energy Requirements for Wetland Tillage (답작의 효율적 경운정지 방법에 관한 연구)

  • 이규승;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.35-47
    • /
    • 1979
  • 수자원과 에너지는 식량 생산에 직접 간접으로 큰 영향을 미치고 있으며 또한 1973년 에너지 위기 이후 농업에 사용된 에너지가 효율적으로 사용되었는가에 대한 연구는 농공학자들의 큰 관심이 되어왔다. 본 연구는 필리핀의 수작농업에 있어서 경운정지시 관개에 따른 토양경도의 변화와 , 토양경도와 연료소모율과의 관계를 구명하고, 에너지와 관개수의 효율적인 이용을 연구하고저 건기와 우기에 각각 수행되었으며 그의 결과를 요약하면 다음과 같다. 가. 건기 1) 관개시작후 1-2일간 토양의 수분함량이 증가함에 다라 토양의 경도는 급격히 감소하였으며, 관개 3일째는 온난한 감소를 ,그리고 4일째부터는 거의 변화가 없었다. 2) 토양의 경도에 따라 경운작업시 연료감소율, 기계의 작업성능에 큰 차가 있었으며 , 관개 3일후 토양의 수분함량과 토양의 경도가 안정됨에 따라 각 처리간의 연료의 소모율과 기계의 작업성능도 비슷하였다. 3) IRRI 5 Hp 경운기는 관개수로 인해 경도가 낮아진 토양에서도 이동성 문제가 없을 만큼 충분히 경량이었다. 4) 관개수의 양의 따라 처리별로 경운전 토양의 전단력에 큰 차가 있었으나 , 경운정지작업후의 토양전단력은 전처리에 있어서 거의 비슷하였다. 이는 경운정지작업시 처리간의 연료소모율, 기계의 작업성능의 차로 설명될 수 있다. 5) 경운정지시의 토양상태는 식물의 생육, 잡초의 발생율에 거의 영향을 미치지 않았다. 6) 본 실험은 한가지 토양형식에 대해 수행되었으며 앞으로 여러 토양형식에 대해 이와 같은실험을 수행하여 토양형식에 따른 수분함량, 토양경도, 에너지 소모율들의 관계를 구명하여 관개수의 효율적인 이용이 가능하리라 사료된다. 나. 우기 1) 경운작업전에 이미 토양이 수분으로 포함되어 있는 상태이었으므로, 추가의 관개수가 토양의 경도, 기계의 작업성능, 연료소모율에 영향을 미치지 않았다. 2) 경운정지기간이 가장 짧았던 처리구(3일) 에 있어서 경운정지후 토양전단력이 다른 3 처리에 비해 크게 나타났다. 식물의 생육 또한 타처리에 비해 저조했으며 잡초발생율도 높았다. 3) 경운정지기간이 가장 짧았던 처리구(3일)을 제외한 3처리 간에는 연료소모율, 식물생육, 잡초발생율등이 거의 비슷하였으며, 우기에는 위의 3 처리 중 11 간의 경운정지기간이 가장 효율적인 것으로 나타났다.

  • PDF