• Title/Summary/Keyword: 전단파괴

Search Result 1,156, Processing Time 0.027 seconds

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

An Experimental Study on the Joints in Precast PC Segmental Bridges (프리캐스트 PC 세그멘탈 교량 접합부에 대한 실험 연구)

  • 오병환;유승운;김종한;이형준;장석훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.42-46
    • /
    • 1994
  • 본 연구에서는 프리캐스트 PC 세그멘탈 교량 접합부의 전단거동을 파악하기 위하여 전단키 접합부의 전단거동과 전단강도 특성을 실험적으로 연구하였다. 본 연구를 통하여 접합부 형상에 따른 하중-변위 관계, 균열거동, 파괴모드, 전단강도 등을 규명하고, 접합부의 역학적 거동에 영향을 미치는 여러인자들에 대해 분석한다. 또한 이로부터 최적의 접합부 형상을 도출하고, 이에 따른 최적의 접합방식을 검토함으로써 접합부 설계의 지침과 해석의 근거를 제시한다.

  • PDF

Wave-Induced Response of Unsaturated and Multi-layered Seabed; A Semi-analytical Method (파랑으로 인한 불포화된 다층 해저지반의 거동;준해석적 방법)

  • ;Rahman, M. S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.45-55
    • /
    • 1999
  • Wave-induced response, liquefaction and stability of unsaturated seabed are studied. The unsaturated seabed is modeled as a fluid-filled polo-elastic medium. The coupled process of fluid flow and the deformation of soil skeleton is formulated in the framework of Biot's theory. The resulting governing equations are solved using a semi-analytical method to evaluate the stresses and pore water pressure of unsaturated and multi-layered seabed. The semi-analytical method can be applied to calculate a pore pressure and the stresses of in anisotropic inhomogeneous seabed. The results indicate that the degree of saturation influences mostly on the magnitudes of a pore pressure and the stresses of unsaturated and multi-layed seabed. Based on the pore pressure and stresses in seabed, the analysis on the possibilities of liquefaction and shear failure was performed. The results show that the maximum depth of shear failure occurrence is deeper than the maximum liquefaction depth.

  • PDF

An Experimental Study on the Characteristics of Seismic Isolators under Extreme Conditions (교량 지진격리받침의 극한특성에 대한 실험적 고찰)

  • Kwahk, Im-Jong;Yoon, Hye-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.105-108
    • /
    • 2008
  • For the early seismic isolation design in Korea, foreign products of isolation bearings were used. But these days, the application of domestic products of isolation bearings is increasing. However various experimental studies can be found very seldom on the extreme and lonr term behaviors of isolation bearings. In this study, we considered the laminated rubber type isolation bearings that have many application cases in Korea and we evaluated their shear strength, long term characteristics such as aging and creep affecting shear strength of bearings in long term period. For the reality of experiments, fabricated isolation bearing specimens are designed for a real structure and shear loading was applied under design compressive loads. To evaluated aging effect, the specimens were exposed to high temperature environment for certain period and their shear properties were measured to compare with their original values. Also we measured creep amount of isolation bearings under constant compressive load for 1,000 hours and estimated creep amount after 60 years compatible with general life cycle of bridges.

  • PDF

A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete (발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구)

  • Min, Gyeong-Jo;Ko, Young-Hun;Fukuda, Daisuke;Oh, Se-Wook;Kim, Jeong-Gyu;Chung, Moon-Kyung;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.26-35
    • /
    • 2019
  • In designing a gravity-type anchorage of earth-anchored suspension bridge, the contact friction between a blasted rock mass and the concrete anchorage plays a key role in the stability of the entire anchorage. Therefore, it is vital to understand the shear behavior of the interface between the blasted rock mass and concrete. In this study, a portable 3D LiDAR scanner was utilized to scan the blasted bottom surfaces, and rock surface roughness was quantitatively analyzed from the scanned profiles to apply to 3D FEM modelling. In addition, based on the 3D FEM model, a three-dimensional dynamic fracture process analysis (DFPA-3D) technique was applied to study on the shear behavior of the interface between blasted rock and concrete through direct shear tests, which was analyzed under constant normal load (CNL). The effects of normal stress and the joint roughness on shear failure behavior are also analyzed.

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

Evaluation of Strength Parameters of Cemented Sand (고결모래의 강도정수 평가)

  • Lee, Hoon-Joo;Choi, Sung-Kun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2008
  • This study proposes the equations evaluating the shear strength of cemented sand by analytical interpretation based on Mohr-Coulomb failure criteria, and verifies them using the results of triaxial and unconfined compression tests. The internal friction angle of cemented sand is identical to that of uncemented one regardless of the stress level, while the cohesion intercept of cemented sand is constant before the breakage of cementation bonds. Therefore, the shear strength of cemented sand can be represented as a summation of the shear strength of uncemented sand and the unconfined compressive strength of cemented sand. In addition, the cohesion intercept of cemented specimen can be expressed as a function of unconfined compressive strength and friction angle. In the transition zone, assuming a constant shear strength, the equations to evaluate shear strength and cohesion intercept of cemented sand are also represented. It is observed that the predicted values using these solutions agree well with the experimental results. The experimental results also show a linear relationship between the unconfined compressive strength and the breaking point of cementation bonds.

Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates (CFRP 판 보강 RC보의 균열 및 박리 손상 모니터링)

  • Yoon, Jun Ho;Han, Jung Hun;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method being widely used to increase the load-carrying capacity of structures is very suitable for existing bridge structures. However, not only flexure and shear failures but also debonding failure might be additionally occured in reinforced concrete(RC) beams strengthened with the CFRP plates. The CFRP debonding failure would cause a brittle fracture of the beam. Therefore, health monitoring for the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors was investigated through a series of experimental studies for realtime structural health monitoring(SHM) for the CFRP laminated concrete structures.

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Numerical Analysis of Load Bearing Behavior of Shallow Foundations (얕은기초의 하중지지거동에 관한 수치해석)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6322-6328
    • /
    • 2014
  • Finite element analyses were performed to find out the load bearing behavior of three kinds of shallow foundations. The analysis results for strip footing showed that local shear failure mode could be observed for a zero dilatancy angle and general shear failure mode could be seen for non-zero dilatancy angles. The ultimate bearing loads for non-zero dilatancy angles were approximately 1.5 times higher than that of a zero dilatancy angle. General shear failure mode was observed for circular footing and square footing regardless of the dilatancy angle. The ultimate bearing loads for a non-zero dilatancy angle were slightly greater than that for a zero dilatancy angle. A comparison of the load-settlement curves for three kinds of footing showed that the load bearing capacities for non-zero dilatancy angle were greater than those for a zero-dilatancy angle.