• Title/Summary/Keyword: 전단응력 스트레인 게이지

Search Result 4, Processing Time 0.02 seconds

The study on optimum design for shear stress integrated pressure sensor (전단응력형 집적화 압력센서의 최적설계)

  • 주리아;도태성;이종녕;서희돈
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.75-81
    • /
    • 1998
  • This paper is to optimize single-element piezoresistor shear stress strain gauge related to aspect ratio of rectangular diaphragm. The shear stress distribution on diaphragm has been simulated by finite-element method(FEM). As simulation results, the maximum sensitivity for strain gauge was appeared at the center of diaphragm with aspect ratio 3, and in along to long edge with the ratio 2. The diaphragm with ratio 2 is not acceptable due to the yield of mask alignment in IC process technology. The optimum condition of diaphragm with respect to good sensitivity was realized in the case of ratio 3. In this case, the area by gauge was 8% of overall size of rectangular diaphragm.

  • PDF

A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE (스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kim, Eung-Hag;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.18-29
    • /
    • 2008
  • The purpose of this study was to compare the polymerization shrinkage of several filling methods using strain gauges. In this study, a light-emitting diode(LED) curing unit(Elipar Freeligh2, 3M EPSE, USA) and plasma arc lamp(PAL) curing unit(Flipo, LOKKI, France) were used for curing, Filtek $Z350^{TM}$(3M EPSE, USA) composite resin was used for the cavity filling. Sixty permanent bicuspid teeth, that were extracted for orthodontic treatment, were studied. The cavities were prepared on the occlusal surface and were filled using the following methods : 1) bulk filling, 2) parallel filling, 3) oblique filling The strain was recorded on the buccal, lingual, mesial and distal surfaces and the strain values were computed into stress values. The shear bond strength of each filling method was tested using a Micro Universal Testing machine. The results can be summarized as follows: 1. In the strain changes, all LED and PAL curing groups showed an increase on the buccal surface and a slow decrease as time elapsed. 2. In the strain changes of the mesial and distal surfaces, the decreases and increases were shown repeatedly and reduced as time elapsed. 3. There were no significant statistical strain changes among filling methods in the LED or PAL curing groups. 4. There were significant statistical strain changes between the LED and PAL curing groups on the buccal surface(p<0.05). 5. From the shear bond strength results, in the LED curing group, filling method 3 showed lower surface stress than filling method 1 and 2(p<0.05). In the PAL curing group, there were no significant statistical strain changes between each filling method. 6. The surface stress of each group was lower than the shear bond strength.

  • PDF

Development of the Pin Type Load-cell Using Strain Gauge (Strain Gauge를 이용한 핀형 로드셀 개발)

  • Lee, Dong-Wook;Park, Min-Hyuk;Lee, Gye-Gaong;Kim, In-Hwan;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.75-82
    • /
    • 2014
  • A pin-type load-cell which uses shear-type strain gauges was developed to measure the tension of a wire in a winch. A finite element analysis was performed to determine the locations of the strain gauges. All of the shear-type strain gauges were attached onto parts that undergo regularly shear stress distributions. A Wheatstone bridge circuit was used to connect each of the gauges and to measure the strains. Linearity within the 5% error range was noted when testing the pin-type load-cell.

Failure Pressure Prediction of Composite T-Joint for Hydrodynamic Ram Test (수압램 시험을 위한 복합재 T-Joint의 파손 압력 예측)

  • Kim, Dong-Geon;Go, Eun-Su;Kim, In-Gul;Woo, Kyung-Sik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Aircraft wing structure is used as a fuel tank containing the fluid. Fuel tank and joint parts are consists of composite structure. Hydrodynamic Ram(HRAM) effect occurs when the high speed object pass through the aircraft wing or explosion and the high pressure are generated in the fuel tank by HRAM effect. High pressure can cause failure of the fuel tank and the joint parts as well as the aircraft wing structure. To ensure the aircraft survivability design, we shall examine the behavior of the joint parts in HRAM effect. In this study, static tensile tests were conducted on four kind of the composite T-Joints. The failure behavior of the composite T-joint was examined by strain gauges and high speed camera. We examine the validity of the Finite Element Modeling by comparing the results of FEA and static tensile tests. The failure stresses and failure pressure of the composite T-Joint were calculated by FEA.