• Title/Summary/Keyword: 전단응답

Search Result 280, Processing Time 0.027 seconds

Seismic Response Control of Structures Using Decentralized Response-Dependent MR Dampers (분산제어식 응답의존형 MR 감쇠기를 이용한 구조물의 지진응답제어)

  • Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • In centralized control system, complicated control systems including sensors, power supply and dampers should be required to satisfy the target response of large-scale structures. The practical applications of the centralized control system, however, is very difficult due to high order finite element model of structures, uncertainty of models, and limitations of the excitation system. In this study, the decentralized response-dependent MR damper of which magnetic field is automatically modulated according to the displacement or velocity transferred to the damper without any sensing and computing systems. this decentralized response-dependent MR damper are investigated according to the ranges of relative magnitude between the control force of MR damper and the story shear force of structures by nonlinear time history analysis. Finally, its performance is compared with centralized LQR algorithm which is used in general centralized control theory for a three story building structure.

Evaluation Methods of Cyclic Shear Stress Ratio for the Assessment of Liquefaction in Korea (국내 액상화 평가를 위한 진동전단응력비 산정)

  • Yoo, Byeong-Soo;Bong, Tae-Ho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.5-15
    • /
    • 2019
  • Usually, the cyclic shear stress ratio (CSR) for the assessment of liquefaction has been determined by performing ground response analysis or adopting simplified method suggested by Seed & Idriss with some modifications. In order to analyze the applicability of the CSR evaluation methods, the present study performed one-dimensional equivalent linear analysis and evaluated CSR based on design codes from FHWA, JRA, and KDS. The comparison of the CSR obtained from each code showed that the CSR from KDS showed the largest error with the analysis results. The reason is because KDS has an error, which defines the stress reduction coefficient applying the maximum acceleration at each depth, not the maximum cyclic shear stress mobilized in the soil.

Response Analysis of RC Bridge Piers due In Multiple Earthquakes (연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석)

  • Lee Do-Hyung;Jeon Jong-Su;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.357-367
    • /
    • 2004
  • In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

Dynamic response of nano-scale plates based on nonlocal elasticity theory (비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답)

  • Kim, Jin-Kyu;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.436-444
    • /
    • 2013
  • This article presents the dynamic response of nano-scale plates using the nonlocal continuum theory and higher-order shear deformation theory. The nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Also, the effects of nonlocal parameters, aspect ratio, side-to-thickness ratio, size of nano-scale plate and time step on dynamic response are investigated and discussed. The amplitude and cycle increase when nonlocal parameter increase. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the transient dynamic analysis of nano-scale structures.

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.

Evaluation of Site-specific Seismic Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역에 대한 부지 고유의 지진 응답 특성 평가)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo;Kim, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.1-13
    • /
    • 2007
  • In order to evaluate the local site effects at two town fortress areas in Korea where stone parapets were col-lapsed by historical earthquakes, site characteristics were assessed using site investigations such as borehole drillings and seismic tests. Equivalent-linear site response analyses were conducted based on the shear ways velocity ($V_s$) profiles and geotechnical characteristics determined from site investigations. The study sites are categorized as site classes C and B according to the mean $V_s$ to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in the short period range of 0.06 to 0.16 sec, which contains the natural period of fortress wall and stone parapet. From the results of site response analyses in the study areas, for site class C indicating most of site conditions, contrary to site class B, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_a$ and $F_v$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the high amplification in short period range, which represent the site-specific seismic response characteristics. These site-specific response characteristics indicate the potential of resonance in fortress walls during earthquake and furthermore could strongly affect the collapse of parapets resulted from seismic events in historical records.

Optimal Design for Seismically Isolated Bridges with Frictional Bearings (마찰받침이 있는 지진격리교량의 최적설계)

  • Lee, Gye-Hee;You, Sang-Bae;Ha, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.399-406
    • /
    • 2010
  • In this paper, the optimization of frictional bearings that applied to improve the seismic performance of conventional bridges were conducted. The nonlinear dynamic analysis of steel bridges and concrete bridges are carried out with the El Centro and artificial earthquake motions, and the reponses of the bridges were optimized by genetic algorithm. The object functions were considered with two parameters, such as shear forces and displacements at bearing, and the optimum object functions were searched by varying the weighting factors of the two parameters. As results, in case of the steel bridges, the optimum results were obtained when larger weight factor was imposed to the shear force. However, in case of concrete bridges, larger weight factor was need to the displacement for optimum results.

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

Modeling and Vibration Control of ERF-Based Intelligent Structures via Sandwich Beam Theory (샌드위치 보 이론을 이용한 ERF 지능구조물의 모델링 및 진동제어)

  • Park, Y.K.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.110-122
    • /
    • 1996
  • 본 논문에서는 전기유동유체(Electro-Rheological Fluid : ERF)를 함유하는 지능구조물의 동적 모델링 및 진동제어를 수행하였다. 먼저 실리콘 오일을 기본용매로 하여 조성된 ERF의 복소 전단모듈러스를 전장부하와 가진 주파수의 함수로 동적 회전모드 실험을 통하여 도출한 후, 이를 샌드위치 보 이론과 연계하여 동적 모델링을 실시하였다. 도출된 6차 편미분방정식 형태의 지배 방정식을 유한요소 모델로 이산화하여 전장부하에 따른 지능구조물의 동탄성 특성값인 감쇠 고유 주파수 및 모달 손실계수를 주파수 영역에서 얻었다. 그리고 ERF를 함유한 샌드위치 형태의 지능구조물을 제작한 후 실험적으로 얻은 동탄성 특성값과 모델에 의해 예측된 동탄성 특성값을 비교 고찰하여 제시된 동적 모델에 대한 타당성을 입증하였다. 또한 모델을 통해 전장부하 함수로 예측된 주파수 응답곡선 중에서 각 주파수 대역에 대해 최소 변위가 되는 응답곡선을 요구응답으로 설정한 후, 그에 해당하는 전장부하를 선정하는 논리적인 능동 진동제어 알고리즘을 제안하였다. 제어알고리즘의 유용성을 입증하기 위해 실험적으로 수행된 능동 진동제어 결과를 주파수영역과 시간영역에서 제시하였다.

  • PDF