• Title/Summary/Keyword: 전단속도비

Search Result 299, Processing Time 0.04 seconds

A Study on the Relationship between Concentration and Settling Velocity of Cohesive Sediment (점착성 유사의 침강 속도와 농도의 관계에 대한 고찰)

  • Son, Minwoo;Byun, Jisun;Park, Byeoungeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.87-87
    • /
    • 2019
  • 흔히 진흙으로 대표되는 점착성 유사는 모래와 같은 비점착성 유사와 달리 응집 현상으로 인해 지속적으로 유사 입자의 크기가 변화한다. 응집 현상은 점착성 유사 입자의 응집 과정과 파괴과정으로 구성된다. 응집 현상 중 응집 과정은 유사 입자 간의 충돌로 인해 발생하는 것으로 이해되며, 충돌을 야기하는 메커니즘으로는 브라운 운동(Brownian Motion), 차등침강(Differential Settling), 난류 전단 (Turbulent Flow Shear)이 있다. 파괴 과정은 입자간 충돌로 인해 깨지는 것이 아닌 난류 전단(Turbulent Shear)로 인한 덩어리 분리(Massive Splitting)가 발생하는 것으로 이해한다. 이러한 유체의 특성, 흐름 특성 (난류 거동) 뿐만 아니라 유사 입자의 특성 모두의 영향을 받으며 지속적인 응집 현상을 겪는 점착성 유사 입자들은 하나의 커다란 덩어리인 플럭(Floc)을 형성한다. 형성된 플럭의 구조는 프랙탈 기하학을 따르는 것으로 이해된다. 따라서 플럭의 구조는 자기 유사성을 띠며, 플럭의 밀도는 형성된 플럭 크기의 함수가 된다. 플럭의 크기가 증가할수록 플럭의 프랙탈 차원이 감소하며, 플럭의 밀도는 감소한다. 많은 이전의 연구에서 플럭의 침강 속도를 농도에 따른 함수로 가정하고 경험식을 이용하여 산정하나, 유사 입자의 침강 속도는 크기와 밀도의 함수임을 Stokes Law를 통해 생각해 볼 수 있다. 이에 본 연구에서는 응집 현상의 결과물로 형성된 응집물의 크기와 밀도를 각각 산정하고, Stokes Law를 이용하여 침강 속도와 응집물 크기의 관계에 대한 연구를 수행하고자 한다. 보다 심도 있는 연구를 위해서는 응집 현상을 야기하는 메커니즘에 대한 이해가 필수적이다. 간소화된 응집 모형으로부터 얻어진 플럭 크기를 이용하여 프랙탈 차원, 플럭의 밀도를 산정한다. 형성된 응집물의 크기와 침강 속도의 관계에 대한 이해를 통해 보다 정확한 플럭의 침강 속도 산정이 가능할 것으로 생각된다.

  • PDF

Analysis on the TBM Penetration Rates in Extremely Hard Rocks (극경암에서의 전단면터널 굴착속도 분석연구)

  • Park, Chul-Whan;Synn, Joong-Ho;park, Chan;Kim, Min-Kyu;Chung, So-Keul;Kim, Hwa-Soo
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.526-532
    • /
    • 2000
  • The uniaxial compressive strength of rock mass is known as the major factor in the assessment of drillability and the optimum excavation design in full-face tunnel excavation by TBM. Referring to worldwide cases, TBM has been applied mostly to the rock mass within the strength range of 80~250 MPa. Recently, a water way tunnel has been constructed as a part of Milyang dam project by TBM within the rock masses where the rock type is mainly granite with some granophyre, hornfels and andesite. Their uniaxial compressive strengths in extended area are estimated higher than 260 MPa. In this paper, the relation between the penetration rate and the rock mass properties is analyzed and TBM application to the very hard rocks is discussed. As a result that three suggestions to predict the TBM net penetration rate are analyzed, NTH method seems a better approach than other methods in the extremely hard rocks. NTH prediction matches with the results of actual values with the variations of 2~20%. Hardness measurement by Schmidt hammer and RMR estimation are carried out along the L = 5.3 km entire TBM tunnel alignment. The net penetration rate measured monthly is shown to be reciprocally proportional to Schmidt rebound hardness and RMR where coefficients of correlation, $R^2$are 0.705 and 0.777 respectively. As a result, they are good quantitative indices for the prediction of TBM net penetration rate in the extremely hard rocks. Magnitude of in-situ stress has a certain effect on TBM performance, and it is required to measure the in-situ stresses in TBM excavation design.

  • PDF

A Study on the Shear Characteristics of the Decomposed Granite Soils Using Direct Shear Test (직접전단시험(直接剪斷試驗)에 의한 화강토(花崗土)의 전단특성(剪斷特性)에 관(關)한 연구(硏究))

  • Lee, Dal Won;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.227-242
    • /
    • 1986
  • This paper describes the observed behavior in the direct shear test on decomposed granite soil having the complicate engineering properties at various different levels of factors. The objectives of this study were to investigate the characteristics of the decomposed granite soil under controlled various moisture content, dry density, strain rate and soaking which give influence to the shear strength. The results were summarized as follows; 1. The shear strength was decreased remarkably with the increasing of moisture contents of A and B soil were 5-10% and 15-20% respectively. 2. Cohesion and angle of internal friction were decreased with the increasing of moisture content and increased with the increasing of dry density. 3. The shear strength was increased with the increasing of normal stress and volume change was decreased on the whole. The shear strength was generally increased with the increasing of the strain rate. 4. As dry density increases, A-soil shows the progressive failure and the decrease of volume change while B-soil shows the initial failure and the increase of volume change. 5. The relationships between the soaked and unsoaked specimens were as follows ; ${\tau}_f=0.1009+1.026{{\tau}_f}^*$ (A-soil), ${\tau}_f=0.1586+0.8005{{\tau}_f}^*$ (B-soil) 6. Angle of internal friction of the direct shear test shows larger value than that of the triaxial compression test. All effective stress path was nearly similar.

  • PDF

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

Evaluation of 2D Shear Wave Velocity Imaging of Subground Using HWAW Method (HWAW 기법을 이용한 지반의 2차원 전단파 속도 평가)

  • Kim, Jong-Tae;Park, Hyung-Choon;Bang, Eun-Seok;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • Two-dimensional imaging of $V_s$ profile becomes more important in Korea because of the large horizontal variation of soil stiffness. To obtain a shear-wave velocity profile in geotechnical practice, various seismic nondestructive investigation methods are being frequently used. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to the determination of $V_s$ profile to overcome some of weaknesses in the existing surface wave methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform has been developed to determine phase and group velocities of waves. Field testing of this method is relatively simple and fast because one experimental setup which consists of one pair of receivers is needed to determine $V_s$ profile of site. The proposed method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise, and uses single array inversion which considers receiver locations. Field tests were performed in 2 sites in order to evaluate accuracy of test method and estimate the applicability of 2-D imaging by HWAW method. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

Earthquake Engineering Bedrock Based on the Shear Wave Velocities of Rock Strata in Korea (국내 암반지층의 전단파속도에 근거한 지진공학적 기반암 결정)

  • Sun, Chang-Guk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.273-281
    • /
    • 2014
  • In most current seismic design codes, design earthquake ground motions are defined by a reference spectrum, based on bedrock and site amplification factors that quantify the geotechnical dynamic conditions. Earthquake engineering bedrock is the fundamental geotechnical formation where the seismic waves are attenuated without amplification. To better define bedrock in an earthquake engineering context, shear wave velocity ($V_S$ ) data obtained from in-situ seismic tests were examined for several rock strata in Korea; these data were categorized by borehole drilling investigations. The $V_S$ values for most soft rock data in Korea are > 750 m/s, which is the threshold $V_S$ value for identifying engineering bedrock from a strong motion station. Conversely, VS values are < 750 m/s for 60% of $V_S$ data in weathered rock in Korea. Thus, the soft (or harder) rock strata below the weathered rock layer in Korea can be regarded as earthquake engineering bedrock.

Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil (지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석)

  • Kim, Gun-Woo;Lim, Hyun-Sung;Song, Su-Min;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.7-20
    • /
    • 2020
  • In this study, the dynamic behavior of a single pile foundation was investigated by using an analytical and numerical studies. The emphasis was given on quantifying a function about the coefficient of dynamic horizontal subgrade reaction from 3D analysis. Based on the numerical analysis, a modified correction factor (α), which is used to obtain the coefficient dynamic horizontal subgrade reaction, was proposed by considering shear wave velocity of soil and confining stress. It was found that the prediction by pseudo-static analysis using the proposed coefficient is in good agreement with the general trends observed by dynamic analysis, and it represents a practical improvement in the prediction of behavior for pile foundations subjected to dynamic loads.

Inversion of spectral analysis of surface waves with analytic Jacobian (해석적 자코비안을 이용한 표면파 기법의 역산)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.233-245
    • /
    • 2002
  • The spectral-analysis-of-surface-waves (SASW) method is a nondestructive testing method based upon generation and detection of elastic stress waves. SASW is widely used as one of the techniques to determine stiffness profile in engineering geophysics. The essential steps involved are construction of an experimental dispersion curve from data collected in situ, and inversion of the dispersion curve to determine the stiffness profile. The main object of this study is to derive an analytical Jacobian for the inversion. If we set the subsurface to N homogeneous layer, it could save 2N times Jacobian calculation compared to numerical jacobian calculation during inversion. To reconstruct a stiffness profile, constrained damped least square method was applied for the inversion. The algorithm was tested for the numerical data and for the real asphalt and tunnel data, which were able to verify the stiffness profile. The stiffness profile reconstructed by the algorithm showed the possibility to appraise the soundness of tunnel with applications SASW.

  • PDF

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.