• Title/Summary/Keyword: 전단보강철근비

Search Result 180, Processing Time 0.017 seconds

Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams According to Aspect Ratio and Volume Fraction of Steel Fiber Under Cyclic Loading (반복하중을 받는 대각보강된 철근콘크리트 연결보의 강섬유 형상비와 혼입률에 따른 이력거동)

  • Choi, Ji-Yoon;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.84-91
    • /
    • 2022
  • In this study, an experimental study was conducted to analyze the hysteresis behavior according to the steel fiber aspect ratio and volume fraction of diagonally reinforced concrete coupling beams under to cyclic loading. The aspect ratio and volume fraction of the steel fibers were set as the main variables, and 4 specimens were fabricated in which the amount of transverse reinforcement of the coupling beam suggested in the domestic building structural standard was relaxed by about 53%. In the experiment, cyclic loading experiments were performed in the displacement control method in accordance with ACI 374.2R-13, and as a result of the experiment, it was found that all specimens containing steel fibers exceeded the nominal shear strength suggested by the current structural standards. As the aspect ratio of the steel fibers increased, the steel fibers prevented the buckling of the diagonal reinforcement, and the bridging effect of the steel fibers held the crack surface of the concrete. The shear strength, stiffness reduction and energy dissipation capacity of the specimens containing steel fibers were superior to those of the Vf0 specimens without steel fibers. Therefore, it is judged that the steel fiber reinforced concrete can relieve the details of the transverse reinforced.

A study on Properties of Strength and Deformation of Composite beams varying Ratio of Tensile bar to Steel (철골철근비에 따른 혼합구조보의 내력 및 변형 특성에 관한 연구)

  • Lim, Byung Ho;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.87-94
    • /
    • 2002
  • In the preceding study, a series of results was presented according to factors like as attaching method of main bar, shear span to depth ratio, reinforcing method for different types of region among various factors, which could determine the properties of composite beams. Based on these results, this study was planned to investigate the structural behaviors of according to attaching method of main bar for composite beams(end-reinforced concrete(RC), center-steel concrete (SC)) varying ratio of tensile bar to steel mainly. Consequently, there were little difference according to attaching method of main bar. And as the ratio of tensile bar to steel increase, the efficiency of strength was high, but ductile capacity of beams could deteriorate. Therefore, to maximize the structural properties of composite beams, it was considered that the ratio of tensile bar to steel should be limited.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

Strength of RC Beam with Various Shear Reinforcement Ratios After Experiencing Different Duration of Fire Load (다양한 전단보강근비를 가진 RC보의 화재노출시간에 따른 강도변화)

  • Seo, Soo-Yeon;Jeoung, Chae-Myeoung;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents research result to study the change of structural capacity of reinforced concrete beams with various shear reinforcement ratios after damage by fire load. In addition, fundamental data are given in order to predict the strength variation of RC member due to fire damage by evaluating the previous calculation method codified in codes. Nine RC beam specimens were made and exposed to the fire controled by the standard fire curve. And the structural capacity was evaluated through a failure test under simple support condition. Previous code formula, ACI code and Eurocode were reviewed and used for the calculation of the strength of specimens damaged by fire. From the test, RC beam specimens exhibited very brittle failure when it exposed to fire controled by standard fire curve during more than one hour. And this failure pattern tended to be more serious when shear reinforcement ratio decreased or fire loading duration increased. From the evaluation of the calculation process in code, the change of strength due to fire can be properly predicted if the damage of materials is well defined.

Experimental Study on Shear Strength of Steel Fiber Reinforced Concrete Beams (강섬유로 보강된 콘크리트 보의 전단강도에 관한 실험적 연구)

  • Kal, Kyoung-Wan;Kim, Kang-Su;Lee, Deuck-Hang;Hwang, Jin-Ha;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.160-170
    • /
    • 2010
  • Steel Fiber Reinforced Concrete (SFRC) beams has greater shear strength than typical reinforced concrete beams due to the high tensile strength of steel fibers. In this research, an experiment has been conducted to investigate the shear behavior of SFRC beams, and especially, the portion of shear resistance by uncracked compressive concrete section has been measured. Based on the test results in this study and 87 test data collected from literature, the accuracy of the existing equations for the estimation of shear strength has been evaluated. The shear strength of SFRC beams increased as more steel fibers were mixed. However, it is considered that the most efficient amount of steel fiber for enhancement of shear strength would be between 1% and 2% in that the specimen with 0.5% of steel fibers were abruptly failed after inclined cracking, and that the specimen with 2.0% of steel fibers showed a relatively low efficiency in increasing shear strength. The portion of shear resistance by the uncracked compressive concrete section was measured to be greater than 21%, and the equation proposed by Oh et al. provided the best accuracy on the estimation of shear strength of SFRC beams among the approaches evaluated in this study.

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Experimental Study on Ductility of RC Columns According to Configuration of Transverse Reinforcement (횡보강근 배근형상에 따른 RC 기둥의 연성에 관한 실험적 연구)

  • Kim, Min Jun;Kim, Do Jin;Kim, Sang Woo;Lee, Jung Yoon;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.18-25
    • /
    • 2012
  • This paper estimates the ductility of reinforced concrete columns according to configurations of transverse reinforcement. A total of 8 reinforced concrete columns were cast and tested in flexure. The test variables in this study were the configurations, yield strength, and amount of transverse reinforcement. The specimens had a cross-section of $250{\times}250mm$ and had a shear span-to-depth ratio of 4.1 to induce flexural failure. In the test, cyclic lateral load was applied to the specimens with a constant axial load. The experimental result indicated that the specimens with proposed configurations of transverse reinforcement showed higher ductility and energy dissipation capacity than the specimens with rectangular tie.

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.