• Title/Summary/Keyword: 전단강도 저감률

Search Result 8, Processing Time 0.022 seconds

Shear Strength Reduction Ratio of Reinforced Concrete Shear Walls with Openings (개구부를 갖는 철근콘크리트 전단벽의 전단강도 저감률)

  • Bae, Baek-Il;Choi, Yun-Cheul;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.451-460
    • /
    • 2010
  • There are many types of remodeling, however, engineers and architectures preferred to merge two or more separate units to one very spacious unit. Performing this type of remodeling, in the case of wall dominant apartments, requires partial removal of structural wall causing a concern of structural integrity. However, there are insufficient studies about partial removal, that is, openings. Presently, ACI standard have no clear way to evaluate the effect of opening on the structural wall. AIJ has the provision about strength reduction factor '$\gamma$'. However, this reduction factor cannot exactly evaluate the reduction effect of openings because this factor '$\gamma$' was determined through the elastic analysis. Therefore, in this study, 2 structural wall specimens were tested and many test results from previous studies were collected. Using these data, this study performed statistical analysis about strength of structural wall which have the opening in wall panel. And this study performed parametric study verifying shear strength reducing effect by opening area. In the results of statistical study, previous reduction factor show very conservative results because this equation did not consider other factors, reinforcement ratio and aspect ratio of openings, which was affect the shear strength of shear walls. Therefore we performed parametric study based on the test data and suggest new equation for shear strength reduction factor '$\gamma$'.

Evaluation of the Shear Strength of Reinforced Concrete Beams Strengthened with Continuous fiber Reinforced Polymer (연속섬유에 의하여 보강된 철근콘크리트 보의 전단강도 평가)

  • Lee Jung-Yoon;Hyang Hyun-Bok;Kim Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.983-992
    • /
    • 2005
  • The shear failure modes of fiber reinforced polymer(FRP) strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are strengthened with larger amount of FRP composites, the beams normally fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the actual rupture strain must be known. The equations previously reported in the technical literature adopt an effective reduction factor for the rupture strain. These equations may not be applicable to FRP strengthened RC beams that are beyond the experimental application limits, because most of these equations are empirical in nature. This paper presents the results of an analytical study on the performance of reinforced concrete beams externally wrapped with FRP composites and internally reinforced with conventional steel stirrups.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading (반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측)

  • 이정윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.7-13
    • /
    • 2002
  • The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

Static Experiment of Reinforced Concrete Frame Retrofitted with Steel Damper System (강재댐퍼시스템으로 내진보강된 철근콘크리트 골조의 정적가력실험)

  • Baek, Eun Rim;Lee, Sang Ho;Oh, Sang Hoon;Kim, Jae Bong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • 최근 전 세계적으로 지진의 발생 빈도가 증가하며 그 규모도 점차 커지는 경향을 보이고 있다. 대형지진의 발생 시 저층 구조물의 붕괴로 인한 인명 및 사회, 경제적 피해가 두드러짐에 따라 기존 저층 구조물의 내진보강기법에 관한 연구가 활발히 진행 중인 추세이다. 우리나라의 경우 강도증가형 내진보강공법이 주를 이루고 있어 다양한 내진보강기법의 개발 및 적용이 필요한 실정이다. 따라서 본 연구에서는 지진입력하중 저감형 내진보강기법으로서 강재댐퍼시스템을 제안하여 구조적 성능을 파악하고, 이를 적용한 보강 실험체와 비보강 실험체를 제작하여 정적가력실험을 통하여 그 성능을 비교하였다. 제안된 강재댐퍼시스템은 입력에너지를 소산시키는 내부의 슬릿형 댐퍼와 이를 지지하는 기둥 및 외부 프레임으로 구성되며, 내부 댐퍼는 먼저 항복하여 에너지를 소산시키기 위하여 지지기둥 및 프레임에 사용된 강재보다 강성 및 강도가 적게 계획되었다. 강재댐퍼의 성능실험 결과, 비교적 안정적 거동을 하며, 강성과 강도 및 에너지 흡수능력이 우수하게 나타났다. 보강 및 비보강 실험체의 골조는 기존 학교 건축물의 표준도면을 기준으로 하여 골조의 일부를 대상으로 60% 축소율을 적용하여 계획하였으며, 보강 실험체는 미리 제작된 강재댐퍼시스템을 골조 내에 설치하여 에폭시 주입법으로 부착시공 하였다. 보강 및 비보강 골조 실험체의 정적가력 실험결과 비보강 실험체는 기둥의 휨 항복 후 변형의 증가에 따라 휨 및 전단 균열이 증가하면서 최종적으로 기둥이 전단파괴 되었으며, 보강 실험체는 비보강 실험체에 비하여 기둥 및 보의 균열이 적고, 골조에 골고루 분포되어 파괴 규모가 감소하였다. 최대 강도면에서 보강 실험체는 비보강 실험체에 비하여 약 3.4배 우수하였으며, 초기강성은 약 7배 가량 유리한 것으로 평가되어 제안된 강재댐퍼시스템이 강도면에서 우수한 성능을 나타냄을 알 수 있었다. 또한 두 실험체의 기둥 주근 및 띠철근의 변형률을 비교한 결과, 비보강 실험체는 대부분의 철근이 항복하여 큰 변형을 일으킨 반면, 보강실험체에서는 철근의 항복현상이 나타나지 않았고 댐퍼가 항복을 하면서 큰 변형을 일으켰다. 이를 통해 지진하중 입력 시 댐퍼에서 입력 에너지를 흡수하여 큰 하중을 부담하며, 기존의 구조부재에는 입력 에너지가 낮아 손상이 보다 적게 발생함을 확인하였다.

  • PDF

An Experimental Study on the Mechanical Behavior of Concrete Using Non-Sintered Cement (비소성 시멘트 콘크리트의 역학적 거동에 대한 실험 연구)

  • Yoo, Sung-Won;Min, Gyeong-Oan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • If cement could be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime rather than clinker, there would be many advantages, including the maximization of the use of these industrial byproducts for high value-added resources, the conservation of natural resources and energy by omitting the use of clinker, the minimization of environmental pollution problems caused by $CO_2$ discharge, and the reduction of the production cost. For this reason, in this study, mechanical behavior tests of non-sintered cement concrete were performed, and elasticity modulus and stress-strain relationship of non-sintered cement concrete were proposed. Nine test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. According to the test results, there was no difference between general cement concrete and non-sintered cement concrete in terms of flexure and shear behavior.

Experimental Study on Bending and Shear Performance of Deck Type Void Slab with Trapezoidal Hollow Ball (사다리꼴 형상의 경량체를 가진 데크형 중공슬래브의 휨 및 전단성능에 대한 실험적 연구)

  • Kim, Pil Jung;Kim, Sang Mo;Park, Joon Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In this study, a trapezoidal hollow ball is used, instead of a spherical hollow ball commonly used in void slab, to secure the high hollow ratio in the deck type void slab. The bending and shear performance was measured with consideration for the shape change of the hollow ball. And to confirm the effect of deck plate and truss wire on shear performance, experiments were performed depending on the installation directions of the one-way deck plate. As a result, the bending performance of the deck type void slab with a trapezoidal hollow ball was similar to that of the void slab with a spherical hollow ball. However, according to the data of shear strength examined, the contribution of shear performance enhancement of the truss wire had a more effect on the shear performance of deck type void slab, rather than the influence by changing of the shape of hollow ball. In the previous studies, the shear strength is reduced to about 60%, due to the reduction of the effective section of concrete by installation of hollow ball. But in this experiment, the maximum load of specimen, in which the deck was installed in horizontal direction, so expected to have no influence on the shear performance, was only reduced to about 87%, due to the truss framework of truss wire.