• Title/Summary/Keyword: 전기화학 센서

Search Result 351, Processing Time 0.024 seconds

Fabrication and Electrical Properties of High Tc $A_{2}B_{2}O_{7}$ Piezoelectric Ceramics Using the Powders Prepared by the Chemical Coprecipitation Method (화학적공침법에 의한 $A_{2}B_{2}O_{7}$ 고온압전세라믹스의 제작과 전기적 특성)

  • Son, Chang-Heon;Jeon, Sang-Jae;Nam, Hyo-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.316-327
    • /
    • 1997
  • Polycrystalline $Sr_{2}Nb_{2}O_{7}$ and $La_{2}Ti_{2}O_{7}$ ceramics with very high Curie temperatures were synthesized by the chemical coprecipitation method (CCP). The powders synthesized were identified by XRD and their sintering behavior and physical properties were studied. The grain-orientation and electrical properties of sintered ceramics were investigated as a function of firing temperature. Single phase could be obtained by CCP method at temperature lower than that of the conventional method by 100 - $150^{\circ}C$. Strontium niobate, $Sr_{2}Nb_{2}O_{7}$, powder was Prepared by CCP method at temperatures as low as $800^{\circ}C$ via intermediate phase of $Sr_{5}Nb_{4}O_{15}$ formed at $700^{\circ}C$. The resulting CCP-derived powder was observed to have finer and more uniform particle size distribution than those obtained through the conventional or the molten salt synthesis method. Sintering of CCP-derived $Sr_{2}Nb_{2}O_{7}$ powder at $1500^{\circ}C$ yielded a highly dense ceramics with 97% theoretical density. Very high grain-orientation developed along the (0k0) direction was observed by SEM, which resulted in anisotropic dielectric properties of the sintered samples, with the dielectric constant values approaching those for single crystal.

  • PDF

An Improvement of Recovery Characteristics of ISFET Glucose Sensor by Employing Oxygen Electrolysis (산소분자의 전기분해법을 도입한 ISFET 포도당센서의 회복특성 개선)

  • Park, Keun-Yong;Choi, Sang-Bok;Lee, Young-Chul;Lee, Min-Ho;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.203-207
    • /
    • 2000
  • The sensitivity of ISFET glucose sensor is improved by employing amperometric actuation method. However, this method takes long time to recover the primary output voltage after measurement because of slow migration of the hydrogen ion between internal and external sensing membranes. Consequently, such a recovery-time delaying problem is one of obstacles to a practical use. In this paper, a new method is proposed to control the concentration of hydrogen ion in internal membrane, which applies a reduction potential to the working electrode for supplying hydroxide ion. Experimental results show that the recovery-time was reduced within 2 minute against decades minute of conventional method.

  • PDF

The Fabrication and Characteristics of RTD(Resistance Thermometer Device) for Micro Thermal Sensors (마이크로 열 센서용 측온저항체 온도센서의 제작 및 특성)

  • Chung, Gwiy-Sang;Hong, Seog-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.171-176
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it, deposited by reactive sputtering and rf magnetron sputtering, respectively, were analyzed with annealing temperature and time by four-point probe, SEM and XRD. Under annealing conditions of $1000^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to $SiO_2$ and insulation without chemical reaction to Pt thin-film, and the sheet resistivity and the resistivity of Pt thin-film deposited on it were $0.1288\;{\Omega}/{\square}$ and $12.88\;{\mu}{\Omega}{\cdot}cm$, respectively. We made Pt resistance pattern on $SiO_2$/Si substrate by lift-off method and fabricated thin-film type Pt-RTD(resistance thermometer device) for micro thermal sensors by Pt-wire, Pt-paste and SOG(spin-on-glass). In the temperature range of $25{\sim}400^{\circ}C$, the TCR value of fabricated Pt-RTD with thickness of $1.0{\mu}m$ was $3927\;ppm/^{\circ}C$ close to the Pt bulk value. Resistance values were varied linearly within the range of measurement temperature.

  • PDF

Preparation of Hydrogels Containing Polypyrrole@lignin Hybrids and Application in Sensors (전도성 고분자/리그닌 복합소재를 함유한 하이드로젤의 제조 및 센서 응용)

  • Park, Sun Young;Park, Soyeon;Kim, Hye Jun;Im, Youngsoon;Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.411-415
    • /
    • 2020
  • In this article, the preparation of hydrogels containing conducting polymer@lignin hybrids and their application to sensing materials were demonstrated using diverse techniques. A conducting polymer, polypyrrole (PPy) was polymerized on the surface of lignin and successful formation was analyzed with Fourier-transform infrared spectroscopy and scanning electron microscopy. Subsequently, PPy@lignin hybrids were mixed with a hydrogel matrix to obtain a conductive hydrogel. The feasibility of using the hydrogel as a sensing material was shown by obtaining reasonable sensing signals using various electrical measurements when adding solvents and solutions to the sensor system. The significance of sensor signals was confirmed with complementary experiments. This study shows that the hydrogel containing the PPy@lignin could be used for sensor applications.

A glucose biosensor based on deposition of glucose oxidase onto Au nanoparticles poly(maleic anhydride)-grafted multiwalled carbon nanotube electrode (금 나노입자/폴리(maleic anhydride) 그래프트 탄소나노튜브에 글루코스 옥시다아제 담지를 기반으로 한 글루코스 바이오센서)

  • Piao, Ming-Hua;Son, Pyeong-Soo;Chang, Choo-Hwan;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-171
    • /
    • 2010
  • Glucose oxidase ($GOD_{ox}$) immobilized biosensor was fabricated by two methods. In one of the methods, gold nanoparticles (Au-NPs) prepared by ${\gamma}$-irradiation were loaded into the poly(maleic anhydride)-grafted multi-walled carbon nanotube, PMAn-g-MWCNT electrode via physical entrapment. In the other method, the Au-NPs were prepared by electrochemical reduction of Au ions on the surface of PMAn-g-MWCNT electrode and then GODox was immobilized into the Au-NPs. The $GOD_{ox}$ immobilized biosensors were tested for electrocatalytic activities to sense glucose. The sensing range of the biosensor based on the Au-NPs physically modified PMAn-g-MWCNT electrode was from $30\;{\mu}M$ to $100\;{\mu}M$ for the glucose concentration, and the detection limit was $15\;{\mu}M$. Interferences of ascorbic acid and uric acid were below 7.6%. The physically Au deposited PMAn-g-MWCNT paste electrodes appear to be good sensor in detecting glucose.

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

Analysis of a.c. Characteristics in Cr-doped ZnO Using Dielectric Functions (Cr을 첨가한 ZnO의 유전함수를 이용한 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.16-16
    • /
    • 2009
  • ZnO($Zn_{1+x}O$)는 n-type 반도성 세라믹스로 우수한 전기적, 광학적, 화학적 특성을 갖고 있어 바리스터, 투명 전도막, 화학 및 바이오 센서, UV light emitter 등 다양한 용도로 사용되고 있다. 또한 ZnO에 각종 천이 금속 산화물을 일정량 첨가함에 따라 발생하는 결함준위와 입계 특성의 변화에 대한 연구가 활발히 진행되고 있다. 다양한 천이 금속 산화물의 첨가에 따른 전기적 광학적 특성의 변화에 대한 결과들이 많이 보고되고 있지만 서로 상충되거나 해석상 다소 어려운 것으로 알려져 있다. 따라서 본 연구에서는 ZnO에 $Cr_2O_3$를 2.0 at% 첨가하여 Cr 첨가에 따른 ZnO의 결함준위와 입계 특성 변화에 대하여 각종 유전함수($Z^*$, $Y^*$, $M^*$, $\varepsilon^*$, and $tan{\delta}$)를 이용하여 고찰하였다 ZnO에 Cr을 첨가할 경우 결함 중 장범위 쿨롱 인력에 의한 결함(0.13~0.18 eV)이 ~100K 영역에서 나타났으며, ZnO 내 결함 중 대표적인 $Zn_j$$V_o$는 서로 겹쳐서 나타났다. 이들 중첩된 결함에 대하여 각종 유전함수를 이용할 경우 서로 분리해 낼 수 있는 강점이 있음을 논하였다. 또한 각 결함준위가 강는 정전용랑(C)과 저항(R)을 impedance-modulus spectroscopy를 이용하여 구한 결과, 소결온도가 높아질수록 정전용량은 증가하였으며, 측정온도가 놓아질수록 높아지는 경향을 나타내었다. 입계의 정전용량은 소결온도가 높아질수록 높아 지지만 측정온도가 높아질수록 낮아지는 경향을 나타내었다. 각 저항값은 소결온도 및 측정온도가 높아질수록 지수적으로 감소하였다. 또한 분포함수를 이용하여 입계 안정성에 대하여 고찰하였다.

  • PDF

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Enhanced HCHO Sensing Performance of NiO-decorated In2O3 Nanorods (NiO가 장식된 In2O3 Nanorods의 HCHO 감지 특성 향상)

  • Zion Park;Younghun Kim;Youjune Jang;Yujin Kim;Soohyun Han;Jae Han Chung;Young-Seok Sim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.310-317
    • /
    • 2024
  • Formaldehyde (HCHO) is a major primary indoor air pollutant with various adverse effects on the human body, includingsuch as sick building syndrome, lung cancer, and nasal cancer. Therefore, gas sensors for effective HCHO detection detecting HCHO are crucial for maintaining a healthy indoor environments, and research is being conducted to develop high-performance sensors for this purpose. AnOne of the effective methods for enhancing the to enhance sensing properties is involves modifying the p-n heterojunction structure, which improves sensing through via electronic sensitization based on the expanded depletion region and chemical sensitization that dissociates specific gases. In this studyHerein, weWe fabricated NiO-decorated In2O3 NRs using an e-beam evaporator based on the glancing angle deposition technique by optimizing the NiO thickness (0, 1, 2, and 3 nm). When exposed to 50 ppm HCHO, NiO-decorated In2O3 NRs showed a 3.91%-fold enhancement in the gas response (Ra/Rg-1= 23.9) and a 41.47% faster response time (40.7 s) than-compared to bare In2O3 NRs with an extremely low theoretical detection limit of ≈approximately 9.3 ppb.