• Title/Summary/Keyword: 전기화학적 흡착

Search Result 205, Processing Time 0.024 seconds

Adsorption Thermodynamics of Polyamidoamide Epichlorohydrin Polymer in an Aqueous Fibrous Suspension (섬유 현탁액내 PAE 고분자 흡착의 열역학적 고찰)

  • Sung-Hoon Yoon;Kwang-Suk Joo;Tae-Won Lee;Kun-Han Kim;Byung-Bin Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.220-228
    • /
    • 2003
  • This study was to examine the thermodynamic features of polyelecrolytic adsorption of polyamidoamine-epichlorohydrin(PAE) in a papermaking wet-end. The PAE adsorption experiments were conducted in a stirred jar containing an aqueous fibrous suspension and evaluated in terms of Langmuir and Freundlich parameters. The electrokinetic property of a stock was examined by measuring the zeta potential of each colloidal suspension. The polyelectrolytic PCD titration was employed to determine the adsorbed amounts of PAE polymer. The zeta potential of a stock, being varied significantly depending upon the addition of PAE polymer, showed initially a sharp increase and later an exponential decay as a function of time . The PAE adsorption exhibited a pseudo-Langmuir adsorption behavior at$20^{\circ}C$ , whereas its Freundlich power(v) increased in a proportional way at an elevated temperature. The train numbers calculated on the basis of adsorption thermodynamics were 7 to 8. The length of the extended loop of PAE was calculated as 215 nm at $20^{\circ}C$ and increased at a rate of 9% at every $10^{\circ}C$ rise in temperature. The PAE adsorption was proven to be an exothermic physisorption with the estimated adsorption enthalpy of -27 to -29 kJ/mol.

Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment (석탄 산처리에 따른 연료의 표면 물성 변화와 직접탄소 이용 연료전지 성능 간의 상관관계 분석분석)

  • Kim, Dong Heon;Eom, Seong Yong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.697-704
    • /
    • 2016
  • Coal modified by acid treatment was investigated to analyze the correlation between the cell performance and electrochemical parameters in a direct carbon fuel cell (DCFC). The fuels were subjected to thermogravimetry analysis, gas adsorption test, and X-ray photoelectron spectroscopy to investigate the fuel properties and surface characteristics. After the treatment of raw coal, the thermal reactivity of the treated fuels increased, and the specific surface area decreased, though the mean pore diameters of three fuels were similar. The coal treated by $HNO_3$ showed the highest ratio of oxygen to carbon, and also an increase in the surface oxygen groups on the fuel surface. Through comparison between the fuel surface properties and electrochemical performance, it was confirmed that the surface oxygen groups have an influence on the improvement in the DCFC performance.

Fundamentals of Underpotential Deposition : Importance of Underpotential Deposition in Interfacial Electrochemistry

  • Lee Jong-Won;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • This article covers the fundamentals of underpotential deposition (UPD), focussing on the importance of UPD in interfacial electrochemistry. Firstly, this article described the basic concepts of UPD, including underpotential shift and electrosorption valency. Secondly, the present article explained UPD of hydrogen, followed by hydrogen evolution or hydrogen absorption, giving special attention to the adsorption sites of hydrogen on metal surface and the absorption mechanism into Pd. Finally, this article briefly presented the important factors associated with UPD in various fields of interfacial electrochemistry from practical viewpoints.

A study on the characterization of electrode at graphite materials by impedance spectroscopy (임피던스를 이용한 흑연재료의 전극특성에 관한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.571-583
    • /
    • 1996
  • The electrochemical behavior on electrographite and graphite foil electrode with porous surface in 0.5 M $K_{2}SO_{4}$ solution with 1 mM $[Fe(CN)_{6}]^{3-}/[Fe(CN)_{6}]^{4-}$ have been characterized by impedance spectroscopy. In cyclic voltammograms, relative high current according to structure of porous surface for graphite materials was represented, and indicated hgih double layer capacitance on graphite foil. The faraday-impedance and the change of impedance spectrum on both graphite materials were not remarkable during polarization by reaction of field transport. Chemical adsorption was represented on electrographite and was depended highly at anodic polarization.

  • PDF

Electrochemical Studies of o-Cresolphthalexon at Mercury Electrode in Alkaline Media (염기성용액 중의 수은전극에서 o-Cresolphthalexon의 전기화학적 연구)

  • Chong-Min Pak;Sam-Woo Kang;Lee-Mi Do;Tae Yoon Eom;Ki-Suk Jung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.158-164
    • /
    • 1991
  • The reduction mechanism at a mercury electrode of o-cresolphthalexon(OCP) in strongly alkaline supporting electrolytes has been investigated by several electrochemical techniques. The radical formed after first one electron reduction uptake, dimerizes. The result of cyclic voltammetric investigation demonstrated the reversible nature of the electron transfer and standard rate constant was $3.27{\times}10^{-2}$ cm/sec. The apparent irreversible behavior of the second wave is a result of the existence of a fast protonation following the second electron transfer. At low concentration of OCP(< $1{\times}10^{-4}$M), cathodic current were remarkably adsorptive properties. Prolonged electrolysis was carried out at controlled potential of -1.85V, original violet color of the solution becames progressively weaker, and then colorless solution. The final product of an exhaustive electrolysis is electro-inactive. The appearence of four steps may be explained by the fact that the reduction of OCP elucidated ECEC mechanism.

  • PDF

Electrochemical Reduction Behavior of Bilirubin (Bilirubin의 전기화학적 환원거동)

  • Bae Zun Ung;Lee Heung Lark;Jung Mi Sik;Park Tae Myung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.374-378
    • /
    • 1991
  • The electrochemical reduction behavior of Bilirubin (BR) in phosphate buffer (pH 7.8) solution was studied by DC polarography, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. In DC polarogram, two reduction waves of BR were found. The half wave potentials of two reduction waves were -1.32 and -1.51 volts vs. Ag/AaCl respectively. The current type of 1st reduction wave was diffusion-controlled and the 2$^{nd}$ reduction wave was diffusion current containing a little kinetic current. The electrochemical reduction process of BR at each reduction step was all irreversible. The prewave appeared at lower concentration than 3.4 ${\times}$ 10$^{-4}$M, this prewave was identified as adsorption prewave. And the number of electron transfered in reduction steps, n$_{app}$ was two for the 1st reduction step and one for the 2$^{nd}$ reduction step.

  • PDF

분리막공정에서 물질이동에 영향을 주는 요소들

  • 박영규
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.46-55
    • /
    • 1994
  • 오늘날 막분리공정의 응용은 다른 분리공정에 비해 경제성과 편리성으로 비교우위에 있어 점차로 사용규모면에 있어서 증대되고 있다. 예를 들면, 바닷물을 음용수로 전환하거나 식품이나 의약공업에서 고분자화합물을 정제, 농축, 분리할 뿐만아니라 신장에서 불순물을 제거에 이르기까지 확대발전되어오고 있으며 화공약품의 분리회수, 초순수화나 환경산업의 폐수처리, 가스의 분리와 회수등의 응용에 이르기까지 쓰임새가 다양하며, 앞으로의 응용범위는 새로운 기능의 분리막개발과 함께 점점 확대되고 있다. 이와같은 막분리공정상 물질전달의 기본적특성인 추진력과 물리적인 성질의 중요성을 이해하는 것은 막분리공정을 설계제작하는데 필요하다. 막내에서 물질전달은 분리코져하는 물질의 확산, 전기장에의한 대류속도, 농도, 압력, 흡착 그리고 온도구배 등 물질이동현상을 조절하는 인자들 뿐만아니라 막의 물리적, 화학적 특성과 분리대상물질의 물리화학적 특성등에 의해 결정된다. 이러한 막내에서의 추진력들은 서로 상호 보완적이고 경우에 따라서는 새로운 효과를 나타낼 수 있다. 본 논문에서는 추진력에 따른 막물질이동에 영향을 주는 요소들을 저자가 경험한 결과들을 토대로 총론형식으로 열거하였다.

  • PDF

A Study on the Electrochemical Properties of Porous Carbon Electrode according to the Organic Solvent Contents (유기용매의 함량비에 따른 다공성 탄소전극의 전기화학적 특성 연구)

  • Lim, Jung-Ae;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In order to increase the surface area of electrodes for electrosorption, porous carbon electrodes were fabricated by a wet phase inversion method. A carbon slurry consisting of a mixture of activated carbon powder (ACP), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) as a solvent was cast directly on a graphite sheet. The cast film was then immersed in pure water for phase inversion. The physical and electrochemical properties of the electrodes were investigated using scanning electron microscopy (SEM), porosimetry, and cyclic voltammetry. The SEM images verified that the pores of various sizes were formed uniformly on the electrode surface. The average pore sizes determined for the electrodes fabricated with various NMP contents ranged from 64.2 to 82.4 nm and the size increased as the NMP content increased. All of the voltammograms showed a typical behavior of charging and discharging characteristic at the electric double layer. The electrical capacitance ranged from 3.88 to $5.87F/cm^2$ depending on the NMP contents, and the electrical capacitance increased as the solvent content decreased. The experimental results showed that the solvent content is an important variable controlling pore size and ultimately the capacitance of the electrode.

Electrochemical behavior and Application of Osmium-Cupferron Complex (오스뮴-쿠페론의 전기화학적 행동 및 응용)

  • Kwon, Young-Soon;Chong, Mee-Young
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.198-205
    • /
    • 2003
  • The ammonium salt of nitrosophenylhydroxylamine, called cupferron, has been used not only as the ligand but also as an oxidizing agent for adsorptive catalytic stripping voltammetry (AdCtSV). Cyclic voltammetry was used for elucidating the electrochemical behavior of Os-cupferron complex in 1 mM phosphate buffer. The optimal conditions for osmium analysis were found to be 1 mM phosphate buffer solution (pH 6.0) containing 0.1 mM cupferron at scan rate of 100 mV/s. By using the plot of reduction peak currents of linear scan voltammograms vs. osmium concentration, the detection limit was $1.0{\times}10^{-7}M$.

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.