• Title/Summary/Keyword: 전기화학적 거동

Search Result 398, Processing Time 0.237 seconds

Adsorption Thermodynamics of Polyamidoamide Epichlorohydrin Polymer in an Aqueous Fibrous Suspension (섬유 현탁액내 PAE 고분자 흡착의 열역학적 고찰)

  • Sung-Hoon Yoon;Kwang-Suk Joo;Tae-Won Lee;Kun-Han Kim;Byung-Bin Park
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.220-228
    • /
    • 2003
  • This study was to examine the thermodynamic features of polyelecrolytic adsorption of polyamidoamine-epichlorohydrin(PAE) in a papermaking wet-end. The PAE adsorption experiments were conducted in a stirred jar containing an aqueous fibrous suspension and evaluated in terms of Langmuir and Freundlich parameters. The electrokinetic property of a stock was examined by measuring the zeta potential of each colloidal suspension. The polyelectrolytic PCD titration was employed to determine the adsorbed amounts of PAE polymer. The zeta potential of a stock, being varied significantly depending upon the addition of PAE polymer, showed initially a sharp increase and later an exponential decay as a function of time . The PAE adsorption exhibited a pseudo-Langmuir adsorption behavior at$20^{\circ}C$ , whereas its Freundlich power(v) increased in a proportional way at an elevated temperature. The train numbers calculated on the basis of adsorption thermodynamics were 7 to 8. The length of the extended loop of PAE was calculated as 215 nm at $20^{\circ}C$ and increased at a rate of 9% at every $10^{\circ}C$ rise in temperature. The PAE adsorption was proven to be an exothermic physisorption with the estimated adsorption enthalpy of -27 to -29 kJ/mol.

Dominant Migration Element in Electrochemical Migration of Eutectic SnPb Solder Alloy in D. I. Water and NaCl Solutions (증류수 및 NaCl 용액내 SnPb 솔더 합금의 Electrochemical Migration 우세 확산원소 분석)

  • Jung, Ja-Young;Lee, Shin-Bok;Yoo, Young-Ran;Kim, Young-Sik;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.1-8
    • /
    • 2006
  • Higher density integration and adoption of new materials in advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, metal interconnects respond to applied voltages by electrochemical ionization and conductive filament formation, which leads to short-circuit failure of the electronic package. In this work, in-situ water drop test and evaluation of corrosion characteristics for SnPb solder alloys in D.I. water and NaCl solutions were carried out to understand the fundamental electrochemical migration characteristics and to correlate each other. It was revealed that electrochemical migration behavior of SnPb solder alloys was closely related to the corrosion characteristics, and Pb was primarily ionized in both D.I. water and $Cl^{-}$ solutions. The quality of passive film formed at film surface seems to be critical not only for corrosion resistance but also for ECM resistance of solder alloys.

  • PDF

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.

Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw (ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동)

  • Kim, S.J.;Moon, Y.P.;Park, G.H.;Jo, H.H.;Kim, W.G.;Son, M.K.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

Electrolytic Decontamination of the Dismantled Metallic Wastes Contaminated with Uanium Compounds in Neutral Salt Solutions (중성염 용액 내에서 우라늄으로 오염된 금속성 해체폐기물의 전해제염)

  • 최왕규;이성렬;김계남;원휘준;정종헌;오원진
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.72-80
    • /
    • 2004
  • Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as $UO_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were peformed in $Na_2SO_4$ and $NaNO_3$ solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in $Na_2SO_4$ and $NaNO_3$ neutral salt electrolyte by reducing $\beta$ radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test I : Base Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 I : 모재부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Occurrence of hydrogen embrittlement could be one of the main obstacles for using structural equipment under hydrogen environment. It is required to develop assessment methods of hydrogen embrittlement for the metals used in production, storage, transmission and application utilities of hydrogen. The most probable method of hydrogen mass transmission is using existing natural gas pipeline. Base or weld part of the pipeline can be damaged by mixed gas of hydrogen in the pipeline. In this study small punch (SP) testing was employed to evaluate the hydrogen embrittlement behavior for a line pipe steel (API X65) with electrochemically hydrogen charged specimens. Results showed that the SP test can be a good candidate test method for hydrogen damage evaluation method. Strength of steel is known to be decreased with the level of hydrogen charging. However, for API X65 steel base metal need in this study, the effect of hydrogen to strength was not significant. It can be negligible regardless of the hydrogen contents in the steel. With this test different strength levels with various hydrogen charging conditions were observed. It can also be anticipated that more sensitive evaluation of material behavior be obtainable by the SP test method.

Preparation and Electrochemical Characteristics of Polymer Electrolyte Based on MCM-41/Poly(ethylene oxide) Composites (MCM-41/Po1y(ethylene oxide) 복합체로 구성된 고분자 전해질의 제조와 전기화학적 특성)

  • Kim Seok;Kang Jin-Young;Lee Sung-Goo;Lee Jae-Rook;Park Soo-Jin
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.403-407
    • /
    • 2005
  • In this work, the solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous mobil crystalline material-41 (MCM-41), and lithium salt, are prepared in order to investigate the influence of MCM-41 contents on the ionic conductivity of the composites. The crystallinity of the SPE composites was evaluated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The ionic conductivity of the SPE composites was measured by the frequency response analyzer (FRA). As a result, the addition of MCM-41 into the polymeric mixture prohibited the growth of PEO crystalline domain due to the mesoporous structures of the MCM-41. The $P(EO)_{16}LiClO_4$/MCM-41 electrolytes show an increased ion conductivity as a function of MCM-41 content up to 8 $wt\%$ and a slightly decreased conductivity over 8 $wt\%$. These ion conductivity characteristics are dependent on a change of polymer crystallinity in the presence of MCM-41 system.

AN ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF AMALGAMS IN THE SALINE SOLUTIONS WITH FLUORIDE COMPOUNDS (불소화합물을 첨가한 생리식염수에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Yun, Chong-Hun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.396-412
    • /
    • 1997
  • The purpose of this study is to observe the corrosion characteristics of five dental amalgams(CAULK FINE CUT, OPTALLOY II, DISPERSALLOY, TYTIN, and VALIANT) in the solutions with fluoride compound through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylindrical metal mold, and condensed by hydraulic pressure(160 kg/$cm^2$). Each specimen was removed from the metal mold. Specimens were polished with the silicone carbide grinding paper 24 hours after condensation and stored at room temperature for 1 week. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgams in 0.9 % saline solution and in the saline solutions with 2.2 ppm, 0.05 %, 2 % NaF, and 8 % $SnF_2$ at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 30 minutes, the potential scan was begun. The potential scan range was -1500m V to + 800m V(vs. S.C.E.) in the working electrode and the scan rate was 50 mV/sec. The results were as follows, 1. The corrosion potential, the potential of anodic current peak, and transpassive potential in the saline solutions with NaF shifted to lower direction than those in normal saline solution, and the current density in the saline solutions with NaF was higher than that in normal saline solution. The differences were increased as the concentrations of NaF became higher. 2. The corrosion potential and transpassive potential in the saline solution with $SnF_2$ shifted to higher direction than those in normal saline solution, and the current density in the saline solution with $SnF_2$ was higher than that in normal saline solution after the corrosion potential. The anodic polarization curves in the saline solution with $SnF_2$ had no outstanding anodic current peak. 3. The corrosion potentials for high-copper amalgams were much higher than those for CAULK FINE CUT and OPTALLOY II in normal saline solution, but, as the concentrations of fluoride compound became higher, the differences in corrosion potentials between them were decreased. The corrosion potentials had the similarity in the saline solution with 2% NaF or 8% $SnF_2$. 4. The current density for TYTIN was the lowest among the others in normal saline solution and in the saline solution with 2.2 ppm or 0.05 % NaF. 5. There was no significant difference in current density between Pd-enriched VALIANT and other high-copper amalgams.

  • PDF

ELECTROCHEMICAL STUDY ON THE CORROSION BEHAVIOUR OF DENTAL AMALGAM IN ARTIFICIAL SALIVA (인공타액에서 아말감의 부식거동에 관한 전기화학적 연구)

  • Kim, Yeoung-Nam;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.2
    • /
    • pp.221-235
    • /
    • 1988
  • The purpose of this study was to observe characteristic properties through the polarization curves and EMPA images from 4 different types of amalgam obtained by using the potentiostats (EG & G PARC) & EPMA (Jeol JSM-35), to investigate the degree of corrosion of each phase of amalgam on the oxidation peak, and to identify corrosion products from the corroded amalgam by use of X-ray diffractometer(Rigaku). After each amlgam alloy and Hg were triturated as the direction of the manufacturer by means of the mechanical amalgamator(Shofu), the triturated mass was inserted into the cylindrical metal mold which was 12mm in diameter and 10mm in height and was condensed by means of routine manner. The specimen was removed from the mold and stored at room temperature for about 7 days. The standard surface preparation was routinely carried out. Anodic polarization measurement was employed to compare the corrosion behaviours of the amalgams in 0.9% saline solution(pH6.8~7.0) and artificial saliva (pH6.8~7.0) at $37^{\circ}C$. The open circuit potential was determined after 30 minutes' immersion of specimen in electrolyte and the potential scan was begun at the potential of 100mV cathodic from the corrosion potential. The scan rate was 1mV/sec and the surface area of amalgam exposed to the solution was 0.64$cm^2$ for each specimen. All the potentials reported are with respect to a saturated calomel electrode (SCE). EPMA images on the determined oxidation peaks of each amalgam in artificial saliva were observed. X-ray diffraction patterns of each sample were recorded before and after polarization in artificial saliva (Aristaloy, Caulk Spherical, Dispersalloy and Tytin: at +770mV, +585mV, +8.10m V and +680m V respectively) by use of a recording diffractometer. Nickel filtered Cu $K_{{\alpha}_1}$ radiation was used and sample was scanned at $4^{\circ}(2{\theta})/min.$ from $25^{\circ}$ to $80^{\circ}$. The following results were obtained. 1. Oxidation peak potential in artificial saliva shifted to more anodic direction than that in saline solution. 2. The corrosion potential of high copper amalgam was more anodic than the potential of low copper amalgam. 3. The current density was lower in artificial saliva than in saline solution. 4. One of the corrosion products, AgCl was identified by X-ray diffraction analysis. 5. ${\gamma}_2$ phase was the most susceptible to corrosion and e phase was stable in low copper amalgam and ${\eta}$' phase and Ag-Cu eutectic were susceptible to corrosion in high copper amalgam.

  • PDF

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.