• Title/Summary/Keyword: 전기화재예측

Search Result 28, Processing Time 0.02 seconds

Traffic Control of Ad-hoc Network for Emergency Rescue Evacuation Support (긴급피난지원을 위한 애드혹 통신망에서 트래픽 제어)

  • Choi, Young-Bok
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2018
  • Recently, natural disasters including earthquakes, tsunamis, floods, and snowstorms, in addition to disasters of human origin such as arson, and acts of terror, have caused numerous injuries and fatalities around the world. We propose an area split clustering control method in multi-hop ah-hoc communication to reduce the amount of data traffic by allowing only parent terminals to exchange and share data for the emergency rescue and evacuation support system.

Analysis of Fire Intensity According to the Zones Classification in Traditional Market Stores (전통재래시장 상가간의 구역 구분에 따른 화재강도 분석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.154-160
    • /
    • 2020
  • This study analyzed the fire intensity according to the zones classification between traditional market stores using FDS software. Modeling was conducted for the Seomoon traditional market district 4 at Daegu, which places combustibles, such as textiles and clothing near the passageway. The first ignition point assumed a short circuit fire situation at the fourth store combustible. The analysis was conducted under similar conditions as the fire situation in 2016. When there was no section wall, the fire spread rapidly through radiation in all directions from the fire-origin point. After 600 seconds, the mall was burnt to the ground. When section walls were present, however, the fire could be restricted inside the compartment. The first intensity of the two analysis conditions was predicted from the total heat energy from 200 seconds (X1) to 600 seconds (X2), where the heat generation rate began to increase rapidly. As a result of installing section walls near the fire point, heat energy generation of approximately 11.12 MW (55.68 %) was delayed. Further analysis of smoke control, according to the section wall arrangement and re-installation facilities, will be needed to study the characteristics of fire in traditional markets comprehensively.

A Study on the Fireproof Characteristic and the Extinguishment by NAF S-III on a Molded Transformer in Substation (변전실용 몰드변압기의 난연성과 NAF S-III 소화에 관한 연구)

  • 이수경;신효섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.78-85
    • /
    • 2001
  • This dissertation is research on the fireproof characteristic of molded transformer and the extinguishable characteristics of the NAF S-III. As the research method, a theoretical examination has been made for the combustion process of epoxy resin, which was the main material of molded transformer, and extinguishing process of NAF S-III, which has recently been used in the clean extinguishable chemicals. Furthermore, for its proof, the experiments on combustion and extin-guishment on molded transformer has been performed. By installing the actual molded transformer in and artificial the horizontal heating furnace which has similar conditions with the electrical substation, and after subsequently ignited, the extinguishing process has been observed by classifying it into the natural extinguishment of the ignited transformer, and extinguishable chemical in NAF S-III has been injected. The volume of injected extinguishable chemical was the economical amount which was equipped with the extinguishable capability on the molded transformer under combustion, and it was calculated with the Announcement of the Ministry of Government Administration and Home Affairs as the basis. With the injection of the calculated extinguishable chemicals, the ignited transformer has completely extinguished within one minute.

  • PDF

A Study on the Design of Microcomputer Processor Algorithm for Electrical Fire Prediction (전기화재 예측을 위한 마이컴 프로세서 알고리즘 설계에 관한 연구)

  • Kwak, Dong-kurl;Choi, Jung-Kyu;Lee, Bong-Seob;Choi, Shin-Hyeong
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.11-12
    • /
    • 2015
  • This study has looked into ways to cut the power supply by predicting electrical fire that may occur in low-voltage cable, which is most frequently used in industrial settings and households. In addition, we have designed a system that cuts off electricity to prevent the fire upon occurrence of events that may cause electrical fire, including short circuit, tracking and contact failure. A lot of previous researches have designed arc suppressors built in analog circuit, which left much to be desired such as difficulty in remote control and inability to identify the location of arc suppressor when it is activated. To address these issues, the study seeks to develop an arc suppressor using micom and to verify its performance through simulations designed to detect arc faults.

  • PDF

A Study on the Ignition Temperature and Ignition Induction Time According to Storage Amount of Wood Pellets (우드펠릿의 저장량에 따른 발화온도 및 발화유도시간에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Kim, Jung-Hun;Jeong, Phil-Hoon;Choi, Jae-Woo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • While wood pellets are often used as a fuel in thermoelectric power plants and firewood boilers, there is a risk of ignition temperature when strong wood pellets, which have a high calorific value, for prolonged periods of time. In this research study, the minimum auto ignition temperature and the ignition limitation temperature according to the change in flow rate depending on the size of the test vessel were calculated, and based on these temperatures, the apparent activation energy was calculated to predict the combustive properties of the material. The apparent activation energy was calculated to be 190.224 kJ/mol. The thicker the sample is storage in the vessel, the longer the ignition induction time was due to the increased difficulty in heat being transferred from the surface of the vessel to the middle section area of the vessel. For vessel of the same size, the higher the flow rate, the lower the auto ignition temperature was. It was also confirmed that increases in the size of the test vessel lowered the auto ignition temperature and increased the ignition induction time.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Integrated Management System to Improve Photovoltaic Operation Efficiency (태양광발전 운영효율 향상을 위한 통합관리시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • A solar power plant is a facility that produces electricity. As the risk of fire and electric shock accidents is diversified, the risk of workers, surrounding people, and facilities is increased, preventing safety accidents and promptly responding to safety accidents Is emerging. In light of the necessity of such development, it is necessary to develop a solar power generation management system that can diagnose and maintain the problems of the power generation system in real time by developing technologies for collecting and analyzing the data produced by the solar power generation system As a result, the utilization rate and the maintenance cost can be reduced. In order to do this, it is necessary to accurately predict the solar power generation amount in the present state, to diagnose the abnormality of the current power generation state and to grasp the abnormal position, and to use the model considering economical efficiency when the abnormal position is grasped, And the time and other information should be provided.

A Method to Acquire Bigdata for Predicting Accidents on Power Switchboards (배전반 안전사고 예측을 위한 빅데이터 자료 획득 방안)

  • Lee, Hyeon Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.351-353
    • /
    • 2021
  • In recent years, while the demand for electricity is rapidly increasing, fire accidents due to negligence in management of switchboards. In particular, switchboards for industrial and electrical resource control can cause serious problems. Thus, for the safety management of power switchboard, a secondary response is conducted to control firing when a specific condition value is satisfied, but in this case, it is highly likely that a considerable amount of time has elapsed after firing. In this paper, we propose a method to acquire big data for the development of a switchboard temperature and power control system that can actively respond to the current situation by monitoring and learning the temperature of the switchboard's busbar connection in real time. Specifically, a method for periodically acquiring and managing data such as temperature and power from various scattered sensors is proposed.

  • PDF