• Title/Summary/Keyword: 전기체 정적 시험

Search Result 15, Processing Time 0.029 seconds

전기체 정적시험 치구설계 기술보고서

  • Kim, Sung-Chan;Shin, Jeong-Woo;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.32-44
    • /
    • 2002
  • This paper contains the information that describes the test fixture design and technology for full-scale airframe static test. Obtained technologies consist of determination of design load for test fixture, design technique for loading system, counterbalance system, positioning system of test article, test equipment and overload protection method. Full-scale airframe static test of advanced jet trainer was implemented using test fixture which are applied these technique.

  • PDF

KC-100 Full-scale Static Test System (KC-100 전기체 정적 구조시험 장치)

  • Shim, Jae-Yeul;Lee, Sang-Geun;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • Full-scale static test was introduced for the KC-100 aircraft which is domestic civil aircraft to be certified for the first time. Test requirement, test frame, and important test stystems such as loading system, counterbalance system, restraint system and jacking system are explained in detail. Especially, the way to satisfy compliance for the installation of test article and loading system is introduced by using check sheets for the installations. 15 Full-scale and 7 local test conditions were successfully completed and the test data was obtained.

KC-100 Full-scale Airframe Static Test (KC-100 전기체 정적 구조시험)

  • Shim, Jae-Yeul;Jung, Keunwan;Lee, Hanyong;Lee, Sang Keun;Hwang, Gui-Chul;Ahn, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • A full-scale static test for a composite structure small aircraft (KC-100) was conducted in the KARI. The test includes 15 full-scale test and 7 local test conditions. Test requirements with test schedule, test article with dummy structures, test load generation, test system, and equipment are introduced for the test. Test load data of the 1st test condition(U1) was analyzed to evaluate an accuracy of load control for the test. The analysis results show that load data obtained during test were within tolerance of Static Null Pacing Error(SNPE) and the error value of load control was 8.6N. The error of load controls for the full-scale static test using dozens of actuators was calculated by a method suggested by authors. Test data for all other test conditions is also shown in this paper. Finally, reactions measured from restraint system of the U1 test condition show that the reaction changes as load increment. The factors which may change the change of reactions for a full-scale static test are introduced in this study.

Verification of Structural Integrity for Cylindrical Subsonic Vehicle (원통형 아음속 비행체 구조 건전성 확인)

  • Choi, Youn Gyu;Noh, Kyung-Ho;Gil, Geun Suk;Jeon, Jong Geun;Baek, Joo Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • In this paper, the structural integrity for a cylindrical vehicle in subsonic environments is verified. In order to confirm static structural safety for the cylindrical vehicle in extreme maneuver condition, the structure analysis and full-scale static structure test are carried out. The commercial finite element codes, MSC. Patran/Nastran is used for numerical simulation. The full-scale static structure test equipment consists of the counterbalance system, loading system and data acquisition system. Besides, the dynamic characteristics for the cylindrical vehicle are reviewed by performing an impact hammer test.

Structural Analysis for 4-Seater Canard Airplane (4인승 선미익기 구조해석)

  • Kim, Sung-Joon;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • In this paper, we have presented structural analysis procedure and full scale test results for 4-seater canard airplane. Construction of the finite element model is critical path for the aircraft structural analysis and directly affects the structural integrity. The refinement of the finite element model should be determined depending on full scale test results. From the results of the structural analysis, 5 design limit loads test conditions and 11 design ultimate loads test conditions were selected. By the presented procedure, the structural integrity of 4-Seater Canard Airplane is successfully obtained.

  • PDF

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.

전기체 구조시험 설비 감시 시스템

  • Chae, Dong-Chul;Hwang, Gui-Chul;Song, Jae-Chang;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Full-scale test facility is a huge system which is integrated by many subsystems. There are several critical elements in test facility system. Those elements may cause undesirably test article failure during testing. Therefore, test facility monitoring system which indicates the operating status of the critical elements is required for performing full-scale structural test. Selection of critical element and design of this monitoring system are explained in detail in this paper. The monitoring system developed are being applied to T-50 full-scale static test, will be expended for full-scale fatigue test in the near future.

  • PDF

Static Test of a Composite Wing with Damage Tolerance Design (손상 허용 설계를 적용한 복합재 날개의 정하중 시험)

  • Park, Min-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.471-478
    • /
    • 2018
  • Static tests of the composite wing structure were performed to verify damage tolerance design. Both 5 cases of DLLT and 3 cases of DULT were completed to meet requirements for static strength. After inducing BVID and open hole damages on the critical areas of the composite wing based on associated regulations, the DULT and fracture test were performed. In major wing parts, the measured strains and displacements agreed well with those of structural analysis. The initial structural fracture occurred at the area having minimum margin of safety as expected by analysis. As a result, it was confirmed that results from analytic model and strength evaluation were similar to behaviors of the composite wing structure.

Full Scale Airframe Static Test of 4 Seater Canard Airplane (4인승 선미익 경항공기 전기체 정적 구조시험)

  • Shin, Jeong-Woo;Kim, Sung-Chan;Kim, Sung-Jun;Chae, Dong-Chul;Lee, Sang-Wook;Kim, Tae-Uk;Shim, Jae-Yeul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2006
  • In this paper, full-scale airframe static test of 4-seater canard airplane(the Firefly) was explained. From the results of the structural analysis, 5 design limit loads test conditions and 11 design ultimate loads test conditions were selected. Test loads analysis was performed and test fixtures and load control system(LCS) were prepared to realize the test loads. To protect the test article during the test, the overload protection system was prepared. Strain and deflection values were acquired through the data acquisition system(DAS) to verify the structural analysis results.