• Title/Summary/Keyword: 전기임피던스

Search Result 1,220, Processing Time 0.03 seconds

Electrochemical properties of heat-treated multi-walled carbon nanotubes (열처리된 탄소나노튜브 상대전극의 전기화학적 특성 연구)

  • Lee, S.K.;Moon, J.H.;Hwang, S.H.;Kim, G.C.;Lee, D.Y.;Kim, D.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • We have studied the effect of heat treatment of multi-walled carbon nanotubes (MWNTs) as a counter electrode on the electro-chemical properties of dye-snsitized solar cells. MWNTs on the p-type Si substrate were synthesized by thermal chemical vapor deposition (CVD) using Fe catalysts. We prepared the two types of MWNTs samples with the different diameters. The rapid thermal annealing (RTA) treatment for the MWNTs was carried out at the growth temperature ($900^{\circ}C$) for 1 minute with $N_2$ gas atmosphere. The structural, electrical and electrochemical properties of MWNTs were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, 2-point probe station and electrochemical impedance spectroscopy (EIS). The I(D)/I(G) ratio of heat-treated MWNTs in Raman spectra was considerably decreased. It was also found that the heat-treated MWNTs showed better redox reaction of iodide at the interface between MWNTs surface and electrolyte than that of as-grown MWNTs. The redox resistance value of heat-treated electrodes was measured to be much lower than that of as-grown electrode at the interface. As a result, the counter electrode using the heat-treated MWNTs showed better electrochemical properties.

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery (전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화)

  • Kang, Donghyun;Arailym, Nurpeissova;Chae, Jeong Eun;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).

Doherty Amplifier Using Load Modulation and Phase Compensation DGS Micro-Strip Line (부하 변조 및 위상 보상 DGS 마이크로스트립 선로를 이용한 도허티 증폭기)

  • Choi Heung-Jae;Lim Jong-Sik;Jeong Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.815-824
    • /
    • 2005
  • In this paper, we proposed a new DGS(Defected Ground Structure) Doherty amplifier for IMT-2000 band. Originally, active load-pull analysis of a Doherty amplifier assumes ideal harmonic termination condition. However, there have been no papers considering this ideal harmonic termination condition. We obtained excellent improvements of efficiency, gain, maximum output power as well as superior size reduction of a Doherly amplifier by satisfying the overlooked assumption of ideal harmonic termination through the adaptation of DGS at the output transmission line of carrier and peaking amplifier that is essential for Doherty operation. The amount of both the 2nd and the 3rd harmonic rejection of the proposed DGS Doherty amplifier over the conventional one are 44.92 dB and over 23.77 dB, respectively. The acquired improvement in Pl dB, gain, drain efficiency, and ACPR to WCDMA 1FA signal were 0.42 dB, 0.33 dB, $6.4\%$ and 5.4 dBc, respectively. Moreover, electrical length of $90{\circ}$ is reduced at each of the DGS carrier amplifier path and DGS peaking amplifier path, therefore the whole amplifier circuit size is considerably reduced.

Identification of Subsurface Discontinuities via Analyses of Borehole Synthetic Seismograms (시추공 합성탄성파 기록을 통한 지하 불연속 경계면의 파악)

  • Kim, Ji-Soo;Lee, Jae-Young;Seo, Yong-Seok;Ju, Hyeon-Tae
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • We integrated and correlated datasets from surface and subsurface geophysics, drilling cores, and engineering geology to identify geological interfaces and characterize the joints and fracture zones within the rock mass. The regional geometry of a geologically weak zone was investigated via a fence projection of electrical resistivity data and a borehole image-processing system. Subsurface discontinuities and intensive fracture zones within the rock mass are delineated by cross-hole seismic tomography and analyses of dip directions in rose diagrams. The dynamic elastic modulus is studied in terms of the P-wave velocity and Poisson's ratio. Subsurface discontinuities, which are conventionally identified using the N value and from core samples, can now be identified from anomalous reflection coefficients (i.e., acoustic impedance contrast) calculated using a pair of well logs, comprising seismic velocity from suspension-PS logging and density from logging. Intensive fracture zones identified in the synthetic seismogram are matched to core loss zones in the drilling core data and to a high concentration of joints in the borehole imaging system. The upper boundaries of fracture zones are correlated to strongly negative amplitude in the synthetic trace, which is constructed by convolution of the optimal Ricker wavelet with a reflection coefficient. The standard deviations of dynamic elastic moduli are higher for fracture zones than for acompact rock mass, due to the wide range of velocities resulting from the large numbers of joints and fractures within the zone.

Generation of Free Chlorine Using $RuO_2$/ Ti Electrode with Various Amount of Ru (Ru 코팅량에 따른 $RuO_2$/Ti 전극의 염소 발생)

  • Lee, JunCheol;Pak, DaeWon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.715-719
    • /
    • 2012
  • We investigated the effects of electrochemical characteristics and generation of chlorine by the different amount of Ru coating which was prepared for $RuO_2$/Ti electrode coated with 1.5 mg, 2.5 mg, 5.5 mg, 8.5 mg Ru per unit area ($cm^2$). As a Result of the cycle voltammetry experiments, chlorine overvoltage of Ru-coated electrodes showed to be the nearly sustained value of approximately 1.15V (vs. Ag/AgCl). By contrary, According to the results of the AC impedance spectroscopy and potentiodynamic polarization tests, the amount of Ru per unit area ($cm^2$) included 2.5 mg, 3.5 mg as $RuO_2$/Ti offered the highest levels of durability which was electrode resistance and corrosion rate appeared to be $0.4582{\Omega}$, $0.5267{\Omega}$ and 0.082 mm/yr, 0.058 mm/yr, respectively. It was also observed that generation of chlorine coated with 3.5 mg per unit area ($cm^2$) was the highest value of 15.2 mg/L.

Prediction of Noise Power Disturbance from Antenna to Transmission Line System (안테나로부터 인접 전송선로에 전달되는 노이즈 전력 예측)

  • Ryu, Soojung;Jeon, Jiwoon;Kim, Kwangho;Jo, Jeongmin;Lee, Seungbae;Kim, SoYoung;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1172-1182
    • /
    • 2014
  • In these days, many kinds of goods are more light and more integrated. As frequency range of mobile applications have increased to improve performance of antenna furthermore, EMI(ElectroMagnetic Interference) problem has frequently caused by disturbance of antenna in device which aggravates other circuit. This paper proposes a technique for the prediction of noise power to the transmission line from antenna located near the line. Although noise power transferred to transmission line is varied by source impedance of antenna and load impedance of transmission line basically, the power magnitude can be presented in a square form of S-parameter between antenna and transmission line due to small variation of transferred power. For this reason, we can use the index expressed the transferred power varied along geometrical shapes of transmission line. As a result, big difference is occurred along location of antenna especially the bended line. And this such experiment is correspond with simulation, these results have meaning physically considering electromagnetic field distribution in near and far field. HFSS of Ansys and CPW with ground is used in this paper.