• Title/Summary/Keyword: 전기이중층

Search Result 286, Processing Time 0.033 seconds

Transient Evolution of Overlapped EDL Fields in a Microfluidic Channel (미소유동 채널에서 중첩된 전기이중층 구조의 과도 형성과정)

  • Kwak, Ho-Sang;Hasselbrink, Jr., Ernest F.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1528-1533
    • /
    • 2004
  • A numerical investigation is made of transient evolutionary prcocess of electroosmotic flow in a two-dimensional microchannel connected to a reservoir. The channel height is very small so that two electric double layers forming on the charged surfaces are overlapped. Transient transports of ions in the electrolyte solution are computed by integrating the Nernst-Planck equation together with the Poisson equation for electric potential. The numerical results illustrate that there are two distinct transient phases. The physical mechanisms and relevant time scales for the transient evolution are described.

  • PDF

Surface Treatment of Multi-walled Carbon Nanotubes for Increasing Electric Double-layer Capacitance (다중벽 탄소나노튜브의 표면처리에 따른 전기이중층 커패시터의 특성)

  • Kim, Ji-Il;Kim, Ick-Jun;Park, Soo-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this work, the electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) were studied. Nitrogen and oxygen functional groups of the MWNTs were introduced by urea and acidic treatment, respectively. The surface functional groups of the MWNTs were confirmed by X-ray photoelectron spectroscopy (XPS) measurements and zeta-potential method. The characteristics of $N_2$ adsorption isotherm at 77 K, specific surface area, and total pore volumes were investigated by BET eqaution, BJH method and t-plot method. Electrochemical properties of the functionalized MWNTs were accumulated by cyclic voltammetry at the scan rates of 50 $mVs^{-1}$ and 100 $mVs^{-1}$ in 1M $H_2SO_4$ as electrolytes. As a result, the functionalized MWNTs led to an increase of capacitance as compared with pristine MWNTs. It was found that the increase of capacitance for urea treated MWNTs was attributed to the increase in density of surface functional groups, resulting in improving the wettability between electrode materials and charge species.

Effect of Acid / Heat Treatment on Electric Double Layer Performance of Needle Cokes (니들코크스의 전기이중층 거동에 미치는 산화처리/열처리 효과)

  • Yang, Sun-Hye;Kim, Ick-Jun;Choi, In-Sik;Kim, Hyun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • In this study, a needle coke was oxidized in a mixture of dilute nitric acid and sodium chlorate ($NaClO_3$) solutions and followed by heat treatment. The samples were analyzed with using XRD, FESEM, elemental analyzer, BET, and Raman spectroscopy. Double layer capacitance was measured with the charge and discharge measurements. The consisting layers of the needle coke were expanded to single phase showing only (001) diffraction peak by the acid treatment for 24 hours. The oxidized coke returned to a graphite structure appearing (002) peak after heat treatment above $200^{\circ}C$. The structure returned could be more easily accessible to the ions by the first charge, and improve the double layer capacitance at the second charge. The two-electorde cell from acid treated coke and $300^{\circ}C$ heat treatment exhibited the maximum capacitances of 32.1 F/g and 29.5 F/ml at the potential of $0{\sim}2.5\;V$.

Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL) (전기이중층에 의한 나노유체의 열전달율 향상)

  • Jung, Jung-Yeul;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

An Theoretical Analysis of Electro-osmotic Flow in 2-dimensional slit with Electrical Double Layers in Interaction (전기 이중층의 상호작용을 고려한 2차원 슬릿 내의 전기삼투 유동에 관한 이론적 해석)

  • Lee, Dae-Keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.497-500
    • /
    • 2006
  • An theoretical analysis on the electro-osmotic flow in a 2-dimensional slit, that is induced by an external electric field acting on the electrical double layers near the slit wall, was performed. Especially, although there were many studies on the interacting electrical double layers, it was found in this study that they have several physical or mathematical fallacies. To resolve these, the general solution on the charge-regulating slit with the height as a parameter was obtained. The results of this work can provide the electrokinetic solution of nanoscale slit with the electrical double layer interaction as well as that of microscale slit without the interaction and can be used as the benchmark of a numerical analysis and the reference of electrokinetic flow path design.

  • PDF

Preparation and Rheological Characterization of Coal-Water Mixture (석탄-물 혼합연료의 제조와 유변학적 특성화)

  • 김도현
    • The Korean Journal of Rheology
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 1998
  • 아역청탄을 이용하여 제조된 CWM(Coal-Water Mixture)연료의 유변학적 특성을 측 정함으로써 음이온 계면활성제 Temol-N, 안정제 Xanthan 및 전해질 등의 첨가제에 대한 성능을 평가하고 최적첨가조성을 결정하였다. 계면확성제의 흡착으로 인해 석탄입자는 음전 하를 띠게 되었고 표면에 전기이중층이 생성되었다. 전기 이중층의 전기적 반발력이 입자의 응집을 막았고 CWA 슬러리의 점도를 감소시켰다. 또한 Xanthan과 NaOH의 첨가로 인해 분산안정성 및 침강안정성이 향상되는 것을 관찰하였다. CWM에서 석탄입자가 차지하는 부 피비를 무게비로 전환하여 표현하고 분산계에서 입자의 부피비에 따른 점도변화를 예측하는 실험식인 Krieger-Dougherty 식과 Frankel-Acrivos 식에 적용하였다. 점도 실험값을 가지 고 식의 변수들을 결정해 본결과 CWM이 나타내는 점도의 석탄함량에 따른 변화를 위 식 들이 비교적 정확시 나타내 주는 것을 확인하였다.

  • PDF

Study of electrochromic cells in $WO_{3}$/$MoO_{3}$ double-layer structure ($WO_{3}$$ MoO_{3}$ 이중층을 가진 전기변색 소자에 관한 연구)

  • 임석범;임동규;백희원;김영호;조봉희;유인종;변문기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.515-518
    • /
    • 2000
  • The electrochromic properties of $WO_{3}$/$MoO_{3}$ and $MoO_{3}$/$WO_{3}$ double-layers have been systemically studied. The double-layers were made by a e-beam evaporation method and investigated by studying optical modulation, transmittance, and cyclic voltammetry. The devices exhibit good optical properties with wavelength range of 400 to 1100 nm(visible and infrared) during coloration as a function of lithium ion charge injection. It has shown that the double-layer electrochromic thin films are improved the electrochromic properties, but the electrochemical properties are less stable.

  • PDF

이중 전자주입층을 사용한 유기발광소자의 계면쌍극자 효과에 의한 전자주입 효율 향상 메커니즘

  • Hwang, Jeong-Hyeon;Chu, Dong-Cheol;Kim, Tae-Hwan;Seo, Ji-Hyeon;Kim, Yeong-Gwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.121-121
    • /
    • 2010
  • 유기발광소자의 발광 효율을 향상하기 위해 발광층에서 전자와 정공의 효율적인 재결합이 중요하기 때문에 발광층에서 재결합 확률을 높이기 위한 전하의 효율적인 주입과 전송에 대한 연구가 많이 진행되고 있다. 본 연구에서는 전자주입효율을 향상하기 위하여 강한 전자 받게 역할을 하는 플러렌 (C60)과 무기물 절연층인 cesium flouride (CsF) 층을 조합한 무기물 이중 전자주입층을 삽입한 녹색 유기발광소자를 제작하였고, 녹색 유기 발광 소자에 사용하여 발광효율의 변화를 관찰하였다. 큰 쌍극자 모멘트를 갖는 CsF 층은 전기전도성이 좋은 C60 층과 Al 층 사이에 삽입되어 전자의 주입장벽을 낮추어 전자주입 효율을 향상하는 역할을 한다. C60만으로 이루어진 단층 전자 주입층으로 구성된 유기발광 소자는 Al 음극전극과 C60 계면사이에 거칠기가 크기 때문에 누설전류의 크기가 커지며 Al 과 플러렌 C60 의 공유결합 형성으로 인해 전자의 주입이 오히려 저하되는 현상을 보였다. 무기물 절연층인 CsF 층을 C60 과 Al 사이에 삽입한 유기발광소자에서 C60 층은 Cs 원자가 유기물층 내부로 확산되는 것을 감소하였다. 매우 얇은 CsF층을 Al층과 C60층 사이에 삽입함으로써 C60과 Al 사이의 공유결합을 없애고 누설전류를 줄이고 전자주입장벽을 낮추어 전자주입효율이 향상하였다. 전자주입 향상으로 인해 발광층 내에서 전자와 정공간의 비율이 개선되어 유기발광 소자의 발광효율도 증가되고 색안정성이 향상되는 것을 관찰할 수 있었다.

  • PDF

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes (페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • Kim, Jong Huy;An, Kay Hyeok;Shin, Kyung Hee;Ryoo, Min Woong;Kim, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.814-821
    • /
    • 1999
  • The specific capacitance characteristics of the electric double layer capacitors(ELDC) which were made of phenol based activated carbon fiber(ACF) electrodes. Also the effect of aqueous electrolytes on the cell performance has been investigated with respect to different specific surface areas of electrodes and different kinds of aqueous electrolytes. It has been shown that larger surface area and pore size, higher conductivity of electrodes, and higher ion mobility of electrolytes have better specific capacitances. It has been found that heat treatment at $1200^{\circ}C$ and $CO_2$ post-activation at $900^{\circ}C$ of the electrode are effective to improve the specific capacitance over 145F/g and 165F/g, respectively. The EDLC showed high efficiency and long cycle life over 30000 cycles.

  • PDF

Electrochemical Properties of Activated Carbon Capacitor Adopting a Proton-conducting Hydrogel Polymer Electrolyte (수소이온전도성 고분자 겔전해질을 적용한 활성탄소계 전기이중층 캐패시터의 전기화학적 특성)

  • Latifatu, Mohammed;Kim, Kwang Man;Kim, Yong Joo;Ko, Jang Myoun
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.292-296
    • /
    • 2012
  • An electric double-layer capacitor (ELDC) of activated carbon electrode is prepared using a proton-conducting hydrogel polymer electrolyte, which is composed of poly(vinyl alcohol), silicotungstic acid, $H_3PO_4$, and deionized water. A solid film by evaporating the hydrogel polymer electrolyte is also prepared for comparison. The hydrogel polymer electrolyte also acts as a separator with the thickness of about $80{\mu}m$ and the room-temperature ionic conductivity of $10^{-2}S\;cm^{-1}$. The EDLC containing the symmetric electrodes of activated carbon shows the specific capacitance of $58F\;g^{-1}$ at $100mV\;s^{-1}$ with a good cycle life, implying that the hydrogel polymer electrolyte is very promising for use in EDLCs.