In this study, the computational fluid dynamics (CFD) simulations were conducted to verify the cooling capacity of the cryocooler used for pre-cooling of hydrogen gas. Based on the experimental results, the effect of the flow rate on a copper pipe attached to the bottom of the cryocooler was investigated. In this study, the temperature data was calculated through the change of boundary condition for heat flux in the copper pipe. In addition, the cooling capacity of the cryocooler for pre-cooling hydrogen gas was considered by calculating the cooling temperature according to the flow rate in the certified operating range. Consequently the pre-cooing system for hydrogen gas was validated with a reasonable accuracy through CFD simulations.
Electric field effect on boiling of refrigerants R11, R113, and FC72 has been investigated experimentally. One purpose of the experimental investigation is to determine the effects of the electrode arrangements on electrohydrodynamic boiling of the above mentioned liquids. The test equipment employed in the experiment consists of a shell and tube heat exchanger with six or six and twelve rows of electrode wires around the tube. It has been found that the applied voltage promotes the boiling heat transfer coefficient except FC72. Boiling heat transfer enhancement obtained is about 230% for R11, 280% for R113. It has also been observed that bubbles detached from the tube aggregate at the place where the electrical gradient force balances with the buoyancy one. These aggregated bubbles force to decrease the boiling heat transfer coefficient as well as to reduce the voltage needed to the dielectric breakdown.
플라즈마를 이용하는 건식 식각 또는 박막 증착 장비(PECVD)의 경우 웨이퍼에 rf bias를 인가하여 이온의 에너지와 입사각을 조절한다. 종래에는 웨이퍼의 가장 자리 3 mm영역을 공정 대상에서 제외하는 exclusion area로 지정하였으나 점차 공정 기술의 발달로 2 mm 이내로 감소하고 있다. 따라서 웨이퍼의 가장 자리에서 발생하는 전기장의 방향 및 크기 변화를 조절할 수 있는 기술의 개발이 필요하게 되었으며 그중 핵심적인 부품이 Si 또는 SiC로 제작되는 edge ring이다. Focus ring이라고도 불리는 이 부품은 웨이퍼 상에서 반경 방향으로 흐르는 가스의 유속이 가장 자리에 근접하면 빨라지는 현상과 이에 의해 식각/증착 화학 반응 속도가 증가하는 문제를 완화하기 위한 것과 적절한 전기 전도도를 부여함으로써 가장 자리의 전기장 분포를 최적화 할 수 있는 새로운 설계 변수로 활용할 수 있다. 스퍼터링의 경우에도 웨이퍼 중앙과 주변 부는 마그네트론 음극의 회전 링과의 입체각이 차이가 나므로 가장 자리의 경우 트렌치나 홀의 내측이 외측에 비해서 증착막의 두께가 얇아지는 문제가 있으며 건식 식각의 경우 홀의 형상이 수직에서 벗어나는 경향이 발생할 수 있다. 또한 사용 시간에 비례해서 edge ring의 형상이 변화하는데 상대적으로 고가품이어서 교체 주기를 설정하는 보다 합리적 기준이 필요하다. 본 연구에서는 전산 유체 역학 모델을 사용하는 ESI사의 CFD-ACE+를 활용하여 edge ring의 형상과 재질이 갖는 영향을 전산 모사하기 위한 기초 작업을 그림 1과 같이 진행하였다. 2D-CCP model에 Ar 가스를 가정하고 비유 전율 10내외 전도도 $0.1/Ohm{\cdot}m$정도의 재질에 대한 용량성 결합 플라즈마에 대해서 계산을 하고 이 때 기판에 인가되는 고주파 전력에 의한 이온의 입사 에너지 분포 및 각도 분포를 Monte Carlo 방법으로 처리하여 계산하였다.
정상상태 회전원판전극(RDE)방법과 유체역학적 요동에 의한 전기화학적(EHD) 임피던스방법을 이용하여 금(Au)회전 원판전극(rotating disk electrode)표면에 형성된 PVC(polyvinyl chloride)피막내 산소확산계수의 온도의존성에 대한 연구를 수행하였다. PVC 피막내에서의 산소확산속도(산소확산계수와 피막두께의 비) $D_f/\delta_f$는 한계전류 대 전극회전각속도의 변화로부터 측정하였고, 확산시간상수(diffusion time constant) $\delta_f^2/D_f$측정된 임피던스 값을 $\ulcorner$비전도성, 다공성 피막을 통한 물질이동$\lrcorner$에 대한 확산방정식으로부터 계산된 값에 피팅(fitting)하여 얻었다. 이 측정된 확산속도와 확산시간상수로부터 상온에서 PVC피막의 두께 $\delta_f$와 피막내에서의 산소확산계수(diffusivity) $D_f$를 각각 결정하였다. 온도가 증가함에 따라 측정된 PVC내에서의 산소확산계수가 용액에서의 산소확산계수 $D_s$보다 더 빠르게 증가하였다. 이는 온도가 증가함에 따라 PVC피막내 공공이 성장하고, 이 공공들이 피막내에서 유효한 확산경로로 작용한다는 것을 의미한다. 본 정상상태 및 유체역학적 요동상태 실험방법을 이용하여 금속표면에 존재하는 비전도성 다공질피막의 두께와 피막내 산소확산계수를 동시에 측정할 수 있었으며, 피막의 다공도를 정량적으로 계산할 수 있었다.
Electro-active polymer, one of smart materials, is a new alternative technology, which can get an ultra precision movements and bio-compatibilty. This paper presents the relationship between elastic modulus and maximum deflection as a key property of maxwell stress effects and also presents the relationship between dielectric constant and maximum deflection as a key property of electro-striction effects in disc-type actuators using segmented PU. To induce equation about distributed load of a disc, we use boundary condition of fully clamped circular plate and to obtain design parameters of a micro-fluidics system, CFD simulation is performed.
This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.
연료전지는 수소를 이용하여 전기를 생산하는 발전 시스템으로 운전 중 수소 누출과 폭발의 위험성을 항상 수반하고 있다. 따라서 안전성의 확보를 위해 연료전지 시스템 내부에서 수소 누출 시 유e동 특성으로 인한 특정 부근 농도 정체와 환기의 영향을 파악하는 것이 필요하다. 실험 장치와 전산유체역학 프로그램을 사용하여 챔버 내 수소의 유통 특성과 환기구에 따른 환기의 영향을 확인하였다. 수소의 누출 속도와 양에 따라 유동장의 형태는 크게 변하였으며 환기구의 위치와 크기는 특정 부근의 농도정체와 챔버 내 전체적인 수소 농도에 영향을 미침으로서 안정성을 확보하는 중요한 인자임을 알 수 있었다. 예측 결과를 실제 실험 모델과 비교하여 그 타당성을 검토하였으며 차후 가정용 연료전지 모듈의 환기구 설계에 적용할 수 있다.
In this work, 3-dimensional, non-isothermal numerical simulation was performed to analyse the effects of contact resistance and electric conductivity of GDL on the fuel cell performance. For numerical simulation contact resistance of Carbon and Stainless steel was measured. The simulation results reveal that 10 times change of electric conductivity leads only 6.5% decrease of PEMFC performance. But stainless steel which has high contact resistance decrease fuel cell performance over 25% at a high current density region than carbon. This results show that suitable Surface treatment technology is needed for metal bipolar plate, especially stainless steel.
이 연구는 Sentaurus Device를 이용하여 여러 가지 캐리어 전송 모델에 대한 반도체의 구조적, 전기적, 열적 작용의 변화를 조절함으로써 공정과 설계를 보다 쉽게 개발하는데 도움이 되리라 본다. 즉, 여러 가지 캐리어 전송 모델들은 밀도구배 모델을 기반으로 확산작용과 유체역학, Monto Carlo 전송 모델로 각기 분류할 수 있다. 각각의 모델들은 필수적인 요소에 의존하여 서로 다른 형태로 나타내어 질 수 있다. 이 연구에서는 Sentaurus Device simulation을 통하여 여러 가지 형태의 캐리어 전송 모델의 변화를 시각적으로 관찰할 것이다.
DCFC는 가스 터빈이나 엔진과 달리 탄소를 사용하여 전기화학반응을 통해 직접 전기를 생산하는 연료전지이며, 주요 특징으로 기존의 발전설비 보다 높은 효율과 낮은 배기 배출물을 발생한다. 본 연구에서는 간단한 열역학 평형 해석을 통해 CO와 $CO_2$가 이론 기전력에 미치는 영향을 확인하였으며, 2차원 CFD 해석 방법을 이용하여 온도에 따른 반응 생성물 변화를 살펴보았다. 그 결과, CO 생성 반응(Boudouard 반응)을 동시에 고려한 이론 기전력 값은 $CO_2$ 생성 반응만 고려한 값(약 1.02 V)보다 크며, 특히 온도가 증가할수록 그 값이 증가함을 보여주었다. 2차원 수치해석 결과를 통하여서 Boudouard 반응이 고온으로 갈수록 중요하며, 비활성 기체로 인하여 Boudouard 반응이 지연됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.