• Title/Summary/Keyword: 전기생산

Search Result 2,142, Processing Time 0.028 seconds

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.

Research Trend on ESG Management of Corporation (기업의 ESG 경영에 대한 국내·외 연구동향)

  • Byun, Youngjo;Woo, Seung Han
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.193-200
    • /
    • 2022
  • The term environmental, social and governance (ESG) was first used in the 2003 United Nations Environmental Programme Finance Initiative (UNEP FI). Among the three areas of ESG, environment refers to the impact of companies on the environment. Environmental factors address climate change policies and attempts to reduce emissions, waste and natural resource consumption. Social factors refer to the direction in which a company can improve the social impact of stakeholder includes employees, customers, communities, and governments involved in direct or indirect interaction with the organization itself and the company. Governance factors refer to stakeholders who make major decisions, the composition of the board of directors, their diversity and independence, and the internal policies that set limits and expectations for decision-making. Research related to ESG management is part of corporate social responsibility, sustainability, corporate or financial performance, and social responsibility investment. Through case studies and data-based empirical studies, it was confirmed that ESG management companies had positive results for most of the ESG related fields. Through literature analysis of domestic and international ESG history, introduction background, and management performance, this paper presents theoretical, practical implications by confirming that ESG's introduction and operation strategies are strong competitive strategies that directly affect corporate growth by creating attractive factors.

Analysis of Crushing/Classification Process for Recovery of Black Mass from Li-ion Battery and Mathematical Modeling of Mixed Materials (폐배터리 블랙 매스(black mass) 회수를 위한 파쇄/분급 공정 분석 및 2종 혼합물의 수학적 분쇄 모델링)

  • Kwanho Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.81-91
    • /
    • 2022
  • The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.

A Study on the Korean Patent Registration Trend of Outdoor Exercise Equipment for the Elderly (노인 관련 야외운동기구의 국내 특허 등록 동향에 관한 연구)

  • Dong-Cheol Chi;Hong-Young Jang
    • Journal of Industrial Convergence
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2023
  • This study analyzed the patent status of the outdoor exercise equipment used primarily by the elderly. The purpose is to utilize the basic data obtained to promote the health of the elderly. The information on the patent was collected from KIPRIS, an information search service provided by the Korean Intellectual Property Office. The search term used was 'outdoor exercise equipment', directly related patents were selected, and a final 157 were analyzed. As a result of the analysis, first, patent registration began in 2007, and 2-3 patents were registered on average every year. Second, patents from the perspective of sports convergence that provide an exercise prescription system using wireless communication, such as the ability to generate electricity by operating a power generation module, providing information on the user's exercise amount, or preventing the loss and theft of weights and safety accidents due to their characteristics, were searched for. Lastly, patents related to exercise equipment that can provide user convenience and increase the frequency of use of exercise equipment were searched. The results of this study confirmed that outdoor exercise equipment is being developed more for the elderly and their convenience, and that companies and public institutions are showing increased interest in outdoor exercise equipment for the elderly. In addition to patent trends analysis, follow-up research in connection with exercise programs using outdoor exercise equipment is needed to develop practical and convenient outdoor exercise equipment in the future.

Experimental Study on the Diagnosis and Failure Prediction for Long-term Performance of ESP to Optimize Operation in Oil and Gas Wells (유·가스정 최적 운영을 위한 ESP의 장기 성능 진단 및 고장 예측 실험 연구)

  • Sung-Jea Lee;Jun-Ho Choi;Jeong-Hwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2023
  • In general, electric submersible pumps (ESPs), which have an average life of 1.0 to 1.5 years, experience a decrease in performance and a reduction in life of the pump depending on oil and gas reservoir characteristics and operating conditions in wells. As the result, the failure of ESP causes high well workover costs due to retrieval and installation, and additional costs due to shut down. In this study, a flow loop system was designed and established to predict the life of ESP in long­term operation of oil and gas wells, and the life cycle data of ESP from the time of installation to the time of failure was acquired and analyzed. Among the data acquired from the system, flow rate, inlet and outlet temperature and pressure, and the data of the vibrator installed on the outside of ESP were analyzed, and then the performance status according to long-term operation was classified into five stages: normal, advice I, advice II, maintenance, and failed. Through the experiments, it was found that there was a difference in the data trend by stage during the long­term operation of the ESP, and then the condition of the ESP was diagnosed and the failure of the pump was predicted according to the operating time. The results derived from this study can be used to develop a failure prediction program and data analysis algorithm for monitoring the condition of ESPs operated in oil and gas wells.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation (건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정)

  • Seung-Hun Lee;Rack-Woo Kim;Chan-Min Kim;Hee-Woong Seok;Sungwook Yoon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses in order to save energy and reduce greenhouse gas emissions. This system can produce heating, cooling, and electricity from hydrogen while recovering waste heat. To implement a hydrogen fuel cell triple heat-combining system in a greenhouse, it is crucial to evaluate the greenhouse's heating and cooling load. Accurate analysis of these loads requires considering factors such as greenhouse configuration, existing heating and cooling systems, and specific crop types being cultivated. Consequently, this study aimed to estimate the cooling and heating load using building energy simulation (BES). This study collected and analyzed meteorological data from 2012 to 2021 for semi-enclosed greenhouses cultivating tomatoes in Jeonju City. The covering material and framework were modeled based on the greenhouse design, and crop energy and soil energy were taken into account. To verify the effectiveness of the building energy simulation, we conducted analyses with and without crops, as well as static and dynamic energy analyses. Furthermore, we calculated the average maximum heating capacity of 449,578 kJ·h-1 and the average cooling capacity of 431,187 kJ·h-1 from the monthly maximum cooling and heating load analyses.

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions (Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과)

  • Je Hong Park;Si Beom Yu;Tae Kwang An;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.

Preparation of Polyacrylate-Based Non-Reinforced Anion Exchange Membranes via Photo-Crosslinking for Reverse Electrodialysis (역전기투석용 광가교형 폴리아크릴레이트계 음이온교환막 제조)

  • Tae Hoon Kim;Seok Hwan Yang;Jang Yong Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2024
  • A photo-crosslinked anion exchange membrane (AEM) based on quaternary-aminated polyacrylates was developed for reverse electrodialysis (RED). Although reverse electrodialysis is a clean and renewable energy generation system, the low power output and high membrane cost are serious obstacles to its commercialization. Cross-linked AEMs without any polymer supporters were fabricated through photo-crosslinking between polymer-typed acrylates with anion conducting groups, in particular, polymer-typed acrylates were synthesized based on engineering plastic with outstanding mechanical and chemical property. The fabricated membranes showed outstanding physical, chemical, and electrochemical properties. The area resistance of the fabricated membranes (CQAPPOA-20, CQAPPOA-35, and CQAPPOA-50) were ~50% lower than that of AMV (2.6 Ω cm2). Moreover, the transport number of CQAPPOA-35 wase comparable to that of AMV, despite the thin thickness (40 ㎛) of the fabricated membranes. The RED stack with the CQAPPOA-35 membrane provided an excellent maximum power density of 2.327 W m-2 at a flow rate of 100 mL min-1, which is 15% higher than that (2.026 W m-2) of the RED stack with the AMV membrane. Considering easy fabrication process by UV photo-crosslinking and outstanding RED stack properties, the CQAPPOA-35 membrane is a promising candidate for REDs.