• Title/Summary/Keyword: 전기비저항 역산

Search Result 129, Processing Time 0.026 seconds

Time-lapse inversion of resistivity tomography monitoring data around a tunnel (터널 주변 전기비저항 토모그래피 모니터링 자료의 시간경과 역산)

  • Cho, In-Ky;Jeong, Jae-Hyeung;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.361-371
    • /
    • 2009
  • Resistivity tomography is very effective geophysical method to find out the resistivity distribution and its change in time around a tunnel. Thus, the resistivity tomogram can provide helpful information which is necessary for the effective maintenance of the tunnel. However, an air filled tunnel severely distorts tomography data, especially when the current or potential electrode is placed near the tunnel. Moreover, the distortion can often lead to misinterpretation of tomography monitoring data. To solve these problem, we developed a resistivity modeling and time-lapse inversion program which include a tunnel. In this study, using the developed program we assured that the inversion including a tunnel gives much more accurate image around a tunnel, compared with the conventional tomogram where the tunnel is not included. We also confirmed that the time-lapse inversion of resistivity monitoring data defines well resistivity changed areas around a tunnel in time.

Application of Inversion Methods to Evaluate the State of Soft Soil using Electrical Resistivity Monitoring Data (전기비저항 모니터링 자료를 이용한 연약지반 평가를 위한 역산기법 적용 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.104-113
    • /
    • 2014
  • Electric resistivity monitoring was applied to evaluate the soft ground in reclaimed land in order to figure out the applicability of physical prospecting. For this, electrical resistivity monitoring data were acquired for total three months and analyzed those data with independent inversion, time-lapse inversion, and 4D inversion methods. The result was compared for various inversion methods so as to figure out what showed the soft soil most properly. Moreover, drilling and CPT(Cone Penetration Test) data were also used in order to find out if each of those inversion methods could distinguish either bed rock or the soft soil clearly. And according to the result, time-lapse inversion showed less inversion artifacts than independent inversion, so it could indicate the soft soil better. If data gained for a longer period than three months are used, 4D inversion has been found to be a more efficient analysis method than the time-lapse inversion method. Electrical resistivity monitoring on the soft soil has been found to be a useful method that can analyze the spatio-temporal electric state of the ground serially.

Joint Inversion of DC Resistivity and Travel Time Tomography Data: Preliminary Results (전기비저항 주시 토모그래피 탐사자료 복합역산 기초 연구)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • Recently, multi-dimensional joint inversion of geophysical data based on fundamentally different physical properties is being actively studied. Joint inversion can provide a way to obtaining much more accurate image of the subsurface structure. Through the joint inversion, furthermore, it is possible to directly estimate non-geophysical material properties from geophysical measurements. In this study, we developed a new algorithm for jointly inverting dc resistivity and seismic traveltime data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed. In particular, we showed that the hidden layer problem in the seismic refraction method due to an inter-bedded low velocity layer can be solved by the joint inversion when appropriate constraints are applied.

Three-dimensional Inversion of Resistivity Data (전기비저항 탐사자료의 3차원 역산)

  • Yi Myeong-Jong;Kim Jung-Ho;Cho Seong-Jun;Chung Seung-Hwan;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.191-201
    • /
    • 1999
  • The interpretation of resistivity data has, so far, mainly been made under the assumption that the earth is of relatively simple structure and then using one or two-dimensional inversion scheme. Since real earth structure and topography are fully three-dimensional and very complicated In nature, however, such assumptions often lead to misinterpretation of the earth structures. In such situations, three-dimensional inversion is probably the only way to get correct image of the earth. In this study, we have developed a three-dimensional inversion code using the finite element solution for the forward problem. The forward modeling algorithm simulates the real field situation with irregular topography. The inverse problem is solved iteratively using the least-squares method with smoothness constraint. Our inversion scheme employs ACB (Active Constraint Balancing) to enhance the resolving power of the inversion. Including Irregular surface topography in the inversion, we can accurately define the earth structures without artifact in the numerical tests. We could get reasonable image of earth structure by Inverting the real field data sets taken over highway bridge construction site.

  • PDF

Inversion of Resistivity Data using Data-weighting (자료 가중을 통한 전기비저항 탐사 자료의 역산)

  • Cho, In-Ky;Lee, Keun-Soo;Kim, Yeon-Jung;Yoon, Dae-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • All the resistivity data contain various kinds of noise. The major sources of noise in DC resistivity measurement are high contact resistance, measurement errors, and sporadic background noise. Thus, it is required to measure data noise to accurately interpret resistivity data. Reciprocal measurements can provide a measure of data precision and noise. In this study, we proposed a data-weighting method from reciprocity measurement. Furthermore, a data-weighting method using both the reciprocity error and data-misfit in the inversion process was studied. Applying the data-weighting method to the inversion of 3D resistivity data, it was confirmed that local anomalies are slightly suppressed in the final inversion results.

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint (강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.139-149
    • /
    • 2018
  • The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.

Application of Gold Exploration Using Three-dimensional Resistivity Inversion in Sambo mine (3차원 전기비저항 역산 방법을 이용한 삼보 광산에서 금광 탐사)

  • Park Jong-Oh;Kim Hee-Joon;Song Moo-Young;You Young-June
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The Sambo mine is located in Hae-je Myeon, Moo-an Gun, Chollanamdo, which consists of host gneiss and rhyolite possessing quartzite veins with other compositions such as gold, silver, and sublimated sulfur. The ore grade estimated from the core was 0.05~10.9g/t or less in gold and 0.05~389g/t or less in silver, indicating a partial mineralization. The purpose of this paper is to understand the subsurface structures and the distribution of mineralized bodies in the Sambo mine using a combined method of Schlumberger, Wenner, and Dipole-di-pole resistivity surveys on the surface and the resistivity tomography survey in boreholes. The result of three-dimensional resistivity inversion showed that the mineralized body is extended to 240m long in the N10°~20°E direction, with 30m wide and 80 m thick from the surface. The low resistivity zones (<1,000ohm-m) determined from the resistivity image were in good agreement with the mineralized bodies and weak zones identified from the logged cores.

Monitoring $CO_2$ injection with cross-hole electrical resistivity tomography (시추공간 전기비저항 토모그래피를 이용한 $CO_2$ 주입 모니터링)

  • Christensen, N.B.;Sherlock, D.;Dodds, K.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the resolution capabilities of electrical resistivity tomography (ERT) in the monitoring of $CO_2$ injection are investigated. The pole-pole and bipole-bipole electrode configuration types are used between two uncased boreholes straddling the $CO_2$ plume. Forward responses for an initial pre-injection model and three models for subsequent stages of $CO_2$ injection are calculated for the two different electrode configuration types, noise is added and the theoretical data are inverted with both L1- and L2-norm optimisation. The results show that $CO_2$ volumes over a certain threshold can be detected with confidence. The L1-norm proved superior to the L2-norm in most instances. Normalisation of the inverted models with the pre-injection inverse model gives good images of the regions of changing resistivity, and an integrated measure of the total change in resistivity proves to be a valid measure of the total injected volume.