• Title/Summary/Keyword: 전기비저항 모니터링

Search Result 86, Processing Time 0.021 seconds

Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection (오염원에 따른 오염지역 물성 변화 및 물리탐사 적용 사례 소개)

  • Yu, Huieun;Kim, Bitnarae;Song, Seo Young;Cho, Sung Oh;Caesary, Desy;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.132-148
    • /
    • 2019
  • Recently, safety and environmental concerns have become major social issues. Especially, a special underground-safety law has been made and enacted to prevent ground subsidence around construction sites. For environmental problems, several researches have started or will start on characterization of contaminated sites, in-situ environmental remediation in subsurface, and monitoring of remediation results. As a part of the researches, geophysical surveys, which have been mainly applied to explore mineral resources, geological features or ground, are used to characterize not only contaminated areas but also fluid flow paths in subsurface environments. As a basic study for the application of geophysical surveys to detect contamination in subsurface, this paper analyzes previous researches to understand changes in geophysical properties of contaminated zones by various contaminants such as leachate, heavy metals, and non-adequate phase liquid (NAPL). Furthermore, this paper briefly introduces how geophysical surveys like direct-current electrical resistivity, induced polarization and ground penetration radar surveys can be applied to detect each contamination, before analyzing case studies of the applications in contaminated areas by NAPL, leachate, heavy metal or nitrogen oxides.

Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals (FBG센서 응답을 이용한 단순보의 동적 변위 및 동특성 추정)

  • Choi, Eun Soo;Kang, Dong Hoon;Chung, Won Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.503-514
    • /
    • 2006
  • FBG sensors are capable of measuring the strain of structures easily and more durably than electric resistance gauges. Thus, many researches are dedicated to the application for the response monitoring or non-destructive evaluation of structures using FBG sensors. Additionally, the measured strains at the top and bottom of a cross-section can be transformed into the curvature of the section, which can be used to calculate its vertical displacement. Hence, this study aims to measure the dynamic strain signals of a steel section simply supported beam and to estimate the dynamic displacement from the strain signals, after which the estimated displacement is com pared with the measured displacement. The dynamic characteristics (natural frequency, damping ratio and mode shape) of the beam are predicted from both the estimated and measured displacement signals, and from the strain time history of the FBG sensors. The predicted properties are compared with those of an analytical model of the beam. The estimated displacement. However, the predicted dynamic properties from both the estimated displacements and the measured strains are well-correlated with those from the measured displacement. It is therefore appreciated that the estimation of the dynamic properties of FBG sensor signals is reasonable. Especially, the strain signal of the FBG sensor was amplified at a higher-frequency region in comparison with the displacement estimation with higher-mode properties.

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Potential Hazard Classification of Aged Cored Fill Dams (노후 코어형 필댐의 잠재 위해성 유형 분류)

  • Park, DongSoon;Oh, Je-Heon
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.207-221
    • /
    • 2016
  • As greater numbers of fill dams and reservoirs become old, the risks of damage or embankment collapse increases. However, few studies have considered the deterioration and hazard classification of the internal core layers of fill dams. This study reports the results of geotechnical investigations of 13 earth-cored fill dams in Korea, based on no-water borehole drilling, Standard Penetration Test, and 2D and 3D electrical resistivity surveys along with in situ and laboratory testing. High-capacity no-water boring minimized core layer disturbance while providing continuous core sample recovery. The results allow the classification of potential hazards related to the existing core layers based on both visual inspection of the recovered samples and the results of engineering surveys and tests. Four types of potential hazard are classified: locally fluidized core with a high water content, rapid water inflow to a borehole, cores with granular materials, and relatively low stiffness of core. Among these, the locally fluidized core is the most critical hazard that requires remedial action because it is related to the potential internal flow path and internal erosion. The other three hazard types are of medium importance and require careful monitoring and regular inspection. Of note, there was no correlation between age and core deterioration. The results are expected to aid the safe management and potential upgrading of aging cored fill dams.

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.

Estimation of $CO_2$ saturation from time-lapse $CO_2$ well logging in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka 육상 대수층에서 시간차 $CO_2$ 물리검층으로부터 $CO_2$ 포화도의 추정)

  • Xue, Ziqiu;Tanase, Daiji;Watanabe, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The first Japanese pilot-scale $CO_2$ sequestration project has been undertaken in an onshore saline aquifer, near Nagaoka in Niigata prefecture, and time-lapse well logs were carried out in observation wells to detect the arrival of injected $CO_2$ and to evaluate $CO_2$ saturation in the reservoir. $CO_2$ was injected into a thin permeable zone at the depth of 1110m at a rate of 20-40 tonnes per day. The total amount of injected $CO_2$ was 10400 tonnes, during the injection period from July 2003 to January 2005. The pilot-scale demonstration allowed an improved understanding of the $CO_2$ movement in a porous sandstone reservoir, by conducting time-lapse geophysical well logs at three observation wells. Comparison between neutron well logging before and after the insertion of fibreglass casing in observation well OB-2 showed good agreement within the target formation, and the higher concentration of shale volume in the reservoir results in a bigger difference between the two well logging results. $CO_2$ breakthrough was identified by induction, sonic, and neutron logs. By sonic logging, we confirmed P-wave velocity reduction that agreed fairly well with a laboratory measurement on drilled core samples from the Nagaoka site. We successfully matched the history changes of sonic P-wave velocity and estimated $CO_2$ saturation a(ter breakthrough in two observation wells out of three. The sonic-velocity history matching result suggested that the sweep efficiency was about 40%. Small effects of $CO_2$ saturation on resistivity resulted in small changes in induction logs when the reservoir was partially saturated. We also found that $CO_2$ saturation in the $CO_2$-bearing zone responded to suspension of $CO_2$ injection.