• Title/Summary/Keyword: 전기로슬래그

Search Result 157, Processing Time 0.03 seconds

Evaluation of Mechanical Properties of Early-age Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로 산화슬래그를 혼입한 초기재령 콘크리트의 역학적 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Lim, Hee-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the mechanical properties of early-age concrete were evaluated by mixing the electric arc furnace oxidizing slag fine aggregate with 30% and 50% replacement ratio. Slump test, air content test and unit volume weight test were performed for fresh concrete, and compressive strength test and chloride penetration experiments were carried out in hardened concrete. The compressive strength increased up to 7 days of curing age with increasing replacement ratio of the electric furnace oxidizing slag, but the strength decreased to 90% level of OPC concrete at 28 days of age. Regarding the result of chloride penetration test, no significant differences from OPC concrete were evaluated, which shows a feasibility of application to concrete aggregate.

Assessment of Ion Leaching and Recycling Potential of Steel Slag Mixed with Clay (점토와 혼합된 제강슬래그의 이온 용출 및 재활용 가능성 평가)

  • Hyeongjoo Kim;Hyeonki Lee;Taegew Ham;Sohee Jeong;Hyeongsoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, the environmental implications of electric arc furnace steel slag, commonly used in road construction and soil reinforcement, were examined. Experiments were conducted to assess the leaching of heavy metals based on particle size and to investigate ion leaching from specimens with varying mixtures of steel slag and clay. The official waste test revealed no detectable heavy metals in the sample items. However, when subjected to leaching experiments and analyzed using ICP-OES, certain heavy metals were found. The reaction of steel slag with water, facilitated by free CaO within the slag, was identified as the cause of leaching. Results showed that aluminum, exhibiting the highest leaching rate, displayed an inverse relationship with particle size. In mixed soil containing steel slag and clay, higher steel slag content resulted in increased aluminum leaching. Nonetheless, the quantity of leached aluminum was notably lower in mixed soil compared to pure steel slag. Furthermore, leaching of other heavy metals remained within acceptable limits. These findings suggest that recycling mixed soil of steel slag and clay for road construction or soil stabilization presents reduced environmental risks compared to using steel slag alone. Utilizing such mixtures could offer an environmentally sustainable and safe alternative.

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

Hydration Properties of High Volume Cement Matrix Using Blast Furnace Slag and Alkaline Aqueous by Electrolysis (고로슬래그 및 전기분해한 알칼리 수용액을 사용한 하이볼륨 시멘트 경화체의 수화특성)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This experimental study is purposed to analyze the effect of alkaline aqueous solution by electrolysis on strength development in order to develop high volume cement matrix using industrial by-products. Blast furnace slag was used a binder, and an alkaline aqueous solution obtained by electrolyzing pure water was used as an alkali activator. The hydration properties of these specimens were then investigated by compressive strength test, XRD and observation of micro-structures using SEM. As a result, we found that compressive strength increased with the addition of alkaline aqueous solution which cement matrix incorporating blast furnace slag. But those strength decreased reversely when replacing ratio of blast furnace slag was increased. It is judged that results of engineering properties evaluation on the binder and alkaline aqueous solution are useful as a basic data for mixtures design and evaluation properties of high volume cement matrix using by-products.

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate (초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성)

  • Lee, Won-Jun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2020
  • The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

Evaluation for Applicability as the Inorganic Binder with Rapid Setting Property for Construction Material of LFS Produced from Various Manufacturing Process (다양한 철강제조공정에서 부산되는 전기로 환원슬래그의 급경성 무기결합재로의 적용성 검토)

  • Kim, Jin-Man;Choi, Sun-Mi;Kim, Ji-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • The Ladle Furnace Slag, about 20% of the electric arc furnace slag, has high content of free CaO and free MgO, which generates the expansion collapse by hydration reaction. Although many researchers have been endeavoring to recycle the EAF reducing slag in construction fields, there is not found the effective recycling method up to now. However, the LFS(Ladle Furnace Slag) contains mineral composition of the system of calcium aluminate with high-reactivity. Therefore, it is possible to developed the quick setting property and the high strength at the early age by the rapid cooling. This study aimed to check the reactive minerals and predict the reactivity with water on the LFS discharged from different steel product plants. The test results show that many types of LFS has hydration reactivity and can use in construction field as a inorganic binder with the rapid setting property.

  • PDF

A Study on the Recovery of a Metalic Fe-particle from the Steelmaking E.A.F. Slag by the Magnetic Separation (전기로 제강 슬래그에서 자력선별에 의한 지금의 회수)

  • 현종영;김형석;신강호;조동성
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.3-8
    • /
    • 1997
  • The EA.F. sleelmaking slag (slag that follow) of a cnmvany 1 Co.. containzd a simple substance of a metal, wustlte (FeO), magnetite (Fe,O,), gehlenite (CaAl,SiO,), monlicellite (CaMgSiO,), dc. To recovere a metal (Fe grade . t95%) in the slag, it is desirable that the particles of a metal are isolated from thc slag and madc for a liberated subslance. Then, the liberaled melal is easlly recoveled by a magnetic separation. If thc rcclarnalcd slag, the sizc of which ranges under 40 nun, have a mulli-stage crushing, the most of a metal in thc slag is simply isolaled as a liberated subslance. If the mad, lhat is a liberated subslance and a sphere, is recovered by a magnetic field intensity. the minimum intensity, at which a metal is attracted, is approximately IOOG and did no1 dcpcnd on the particle size of a metad in the same particles. TIe recovered material. that contdined a iron (Fe) over 95% is a metal which is crushed slag by l00G in the multi-stage. If the magnetic field intcns~ty increase, the recovery mcrcasc, but the concentration grade decrease Bewusc thc concentration eams more and more impurities, iron oxide and the coml~ound of alkali earth element. 'll~ercforc If the rccla~nated slag have the multi-stage crushing, the metal is almostly recovered in the crushed slag by lO0G on each particles. If the slag, used as a rcclamatian lhat is a amount of 350,000 tan from I Co., was undcr the multistage crushing and then separaled by 100gauss, it is possible to recova a metal approximately 2.500 Ion, lhat is 0.73% of n ~eclamated slag. in 304.7 mm particles and to recover 4.200 tan in 0.3-1.7 mm particles , that is 1.2% nf a rcclamated slag, in a year. Therefore, ihe told recoverable meld is 6,700 ton, that is 19% of a reclmated slag, in a year, too.

  • PDF