• Title/Summary/Keyword: 전기구동형 폴리머

Search Result 6, Processing Time 0.022 seconds

Optical modulator based on a novel side-chain polymer (곁사슬형 폴리머를 이용한 광 변조기)

  • 박선택;주정진;도정윤;박승구;이명현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.150-151
    • /
    • 2003
  • 폴리머 전기광학 변조기는 넓은 변조대역, 낮은 구동전압, 빠른 응답속도, 및 쉬운 공정등의 잇점 때문에 관심이 집중되어 많은 연구가 되어져 왔다. 최근에는 1000Hz 이상에서 동작하거나 1V 이하의 구동전압을 갖는 폴리머 광 변조기가 보고된바 있으며 이는 저가의 광 변조기 개발의 가능성을 보여준다. 그러나 폴리머 광 변조기는 기존의 광 변조기들에 비해 광 전파손실이 크고 열적 안정성이 낮다는 문제점등이 있다. (중략)

  • PDF

Characterization of Electrostrictive Polyurethane Films for Micro-Actuators (전기왜곡성 폴리우레탄 엑츄에이터의 특성 평가)

  • Jeong, Eun-Soo;Park, Han-Soo;Jeong, Hae-Do;Jo, Nam-Ju;Jae, Woo-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.161-167
    • /
    • 2002
  • For the purpose of applying to micro-actuator, thermal properties and displacement of electrostrictive polyurethane(PU) elastomers have been measured. In order to understand an effect of PU component, crosslinking agent are controlled by 0.5 wt% and 1 wt%. DMPA and anther chain extenders were used. PU sample that chain extenders are DMPA is added NaOH for comprehension of effect of ionic groups. The deposited electrode sire on PU films is equal to acrylic holder size when the displacement was measured. Dynamic response according to frequency, displacement and recovery time according to PU thickness were measured. 1 wt% crosslinking agent contents PU samples have higher displacement and lower recovery time than 0.5 wt% crosslinking agent contents PU. If the PU thickness is increased, the actuating voltage for generating of same displacement is increased, too.

Polymeric digital optical switch with a coupling region modified for optimum mode coupling (모드 결합을 최적화 하기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치)

  • 이상신;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.245-249
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum coupling is designed and demonstrated. Its branch waveguide is fabricated by reactive ion etching. Then, the modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides, and it is implemented by photobleaching after the device fabrication. The structure of the modified coupling region and its refractive index profiles are designed to optimize and mode coupling in the Y-branch waveguide. Therefore, the switching performance of the device was shown to be enhanced with a fixed device length. The measured drive voltage is reduced by more than 30 percents, and the crosstalk is also improved by about 4~6 dB.

  • PDF

Preparation and Characterization of Electro-Active IPMC(Ion-exchange Polymer Metal Composite) Actuator (전기활성 IPMC(ion-exchange Polymer Metal Composite) 구동기 제조 및 구동특성 연구)

  • 이준호;이두성;김홍경;이영관;최혁렬;김훈모;전재욱;탁용석;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • The low actuation voltage and quick bending response of IPMC(ion-exchange polymer metal composite) are considered attractive for the construction of various types of actuators. In this study, in order to develop a new type actuators by using the IPMC platinum electrode of IPMC are fabricated by using electroless impregnation-reduction method plating. As the platinum-plating times are increased, IPMC performance was improved in terms of bending displacement and force due to the enhanced surface conductivity. In addition, we investigated the basic actuation characteristics of resonance frequency and actuator length as well as the effect of water uptake and ion mobility. Using the classical laminate theory(CLT), a modeling methodology was developed to predict the deformation, bending moment, and residual stress distribution of anisotropic IPMC thin plates. In this modeling methodology, the internal stress evolved by the unsymmetric distribution of water inside IPMC was quantitatively calculated and subsequently the bending moment and the curvature were estimated for various geometry of IPMC actuator.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine Moieties in the Side Chain (페릴렌과 트리아진기를 측쇄로 가지는 청색 발광 공중합체의 전기발광 특성)

  • Lee Chang Ho;Ryu Seung Hoon;Oh Hwan Sool;Oh Se Young
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.367-373
    • /
    • 2004
  • Novel non-conjugated blue light-emitting copolymers containing perylene and triazine moieties as light emitting and electron transporting units, respectively in the polymer side chain were synthesized. The resulting copolymers were soluble in most organic solvents such as chlorobenzene, THF, chloroform and benzene. The single-layered electroluminescence (EL) device consisting of indium tin oxide (ITO) /copolymer/aluminium (Al) exhibited a maximum external quantum efficiency ($0.003\%$) and a good carrier balance when the triazine content was $30\%$. In particular, the device emitted blue light (479 nm) corresponding to the emission of perylene moiety. The drive voltage was observed at 5 V and the CIE coordinate was x=0.16, y=0.17.