Browse > Article

Electroluminescence Characteristics of Blue Light Emitting Copolymer Containing Perylene and Triazine Moieties in the Side Chain  

Lee Chang Ho (Department of Chemical & Biomolecular Engineering, Sogang University)
Ryu Seung Hoon (Department of Chemical & Biomolecular Engineering, Sogang University)
Oh Hwan Sool (Department of Electronics Engineering, Konkuk University)
Oh Se Young (Department of Chemical & Biomolecular Engineering, Sogang University)
Publication Information
Polymer(Korea) / v.28, no.5, 2004 , pp. 367-373 More about this Journal
Abstract
Novel non-conjugated blue light-emitting copolymers containing perylene and triazine moieties as light emitting and electron transporting units, respectively in the polymer side chain were synthesized. The resulting copolymers were soluble in most organic solvents such as chlorobenzene, THF, chloroform and benzene. The single-layered electroluminescence (EL) device consisting of indium tin oxide (ITO) /copolymer/aluminium (Al) exhibited a maximum external quantum efficiency ($0.003\%$) and a good carrier balance when the triazine content was $30\%$. In particular, the device emitted blue light (479 nm) corresponding to the emission of perylene moiety. The drive voltage was observed at 5 V and the CIE coordinate was x=0.16, y=0.17.
Keywords
blue light-emitting copolymer; electron transporting unit; single-layered EL device; carrier balance; drive voltage;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. S. Lee, J. S. Suh, and I. H. Cho, J. Ind. Eng. Chem., 7, 396 (2001)
2 Z. Weihong, H. Cheng, C. Kongcha, and T. He, Synth. Met., 96, 151 (1998)   DOI   ScienceOn
3 S. Y. oh, C. H. Lee, and J. W. Choi, Synth. Metals., 117, 195 (2001)   DOI   ScienceOn
4 F. Willig, Chem. Phys. Lett., 40, 331 (1976)   DOI   ScienceOn
5 D. Braun and A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991)   DOI
6 N. Tessler, G. J. Denton, and R. H. Friend, Nature, 382, 695 (1996)   DOI   ScienceOn
7 P. L. Bum and I. D. W. Samuel, Mat. Today, 1, 3 (1998)
8 T. W. Lee, O. O. Park, J. Kim and Y. C. Kim, Macromol. Res., 10, 278 (2002)   DOI
9 H. Sirringhaus, N. Tessler, and R. H. Friend, Science, 280, 1741 (1998)   DOI   PUBMED   ScienceOn
10 C. H. Lee, S. H. Ryu, and S. Y Oh, J. Polym. Sci. Polym. Phys., 41, 2733 (2003)   DOI   ScienceOn
11 S. Y Oh, C. H. Lee, and S. Jung, Mol. Cryst. Liq. Cryst., 371, 415 (2001)   DOI
12 C. H. Lee, S. H. Ryu, and S. Y. Oh, Mat. Sci. & Eng. C, 24, 87 (2004)   DOI   ScienceOn
13 C. H. Lee, S. W. Kim, and S. Y. Oh, Polymer(Korea), 26, 543 (2002)
14 Y. J. Shirota, Mat. Chem., 10, 1 (2000)   DOI   ScienceOn
15 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987)   DOI
16 J. Matsui and T. Miyashita, Angew. Chem. Int. Ed., 42, 2272 (2003)   DOI   PUBMED   ScienceOn
17 J. Kido, M. Kohda, K. Hongawa, K. Okuyama, and K. Nagai, Mol. Cryst. Liq. Cryst., 227, 277 (1993)   DOI
18 B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobsen, Nature, 394, 253 (1998)   DOI   ScienceOn
19 F. Nuesch, L. J. Rothberg, E. W. Forsythe, Q. T. Le, J. D. Kres, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferrari, Phys. Rev. B., 54, 14321 (1996)   DOI   ScienceOn
20 K. A. Killeen and M. E. Thompson, J. Appl. Phys., 91, 6717 (2002)   DOI   ScienceOn