• Title/Summary/Keyword: 전극팁

Search Result 31, Processing Time 0.02 seconds

AC 이중전기영동법에 의한 나노팁 제작용 탄소나노튜브 시편

  • 최재성;이준석;강경수;곽윤근;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.161-161
    • /
    • 2004
  • AC 이중전기영동(AC electrophoresis)의 원리를 이용하여 탄소나노튜브 팁 제작용 탄소나노튜브 시편의 기초 실험을 수행하였다. 본 연구에서 사용한 방법은, 끝이 뽀족한 다수의 팁(tip)에 탄소나노튜브를 비교적 균일하게 부착시킬 수 있는 공정의 기반이 된다. 이것은 탄소나노튜브를 이용한 나노팁(nano-tip)이나 탄소나노튜브 나노그리퍼(nanogripper) 제작 공정에 균일성을 확보할 수 있는 중요한 방법으로 활용될 수 있다. 탄소나노튜브 시편의 제작을 위해, 끝단이 곡률반경이 50nm 정도인 텅스텐 팁과 직경 1.5mm, 깊이 1.5mm의 실린더형 금속전극을 사용했다.(중략)

  • PDF

A Study of the Arc Stabilization for Tandem EGW (탄뎀 EGW 기법의 아크 안정화 연구)

  • Hong, Tae-Min;Park, Jong-Min;Kim, Jin-Yong;Huh, Man-Joo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.15-15
    • /
    • 2009
  • 최근 컨테이너선은 점차 대형화되고 있으며, 이에 따라 선체의 외판 상부의 철판 두께도 최대 80mm 까지 설계되고 있다. 블록 외판의 수직 맞대기 용접의 경우 고능률 용접기법인 Electro Gas Weldig(이하 EGW)이 적용되고 있으나, 극 후판의 경우, 기존의 한 개의 전극만으로는 적용 가능한 두께 범위의 한계가 있어 수직 맞대기 용접의 용접생산을 향상시키기 위해 2개의 전극을 사용하는 탄뎀 EGW 기법에 의한 시공법이 고려되었다. 탄뎀 EGW 기법의 시공법에 관한 보고서는 국내외에서 많이 발표되어져 왔다. 하지만 실선 적용에 있어 두께 80mm, 길이 2M 이상의 철판을 안정적으로 용접하기 위한 장애요소는 용접 중 적절한 슬래그의 배출 조절이다. 두개의 용접 와이어를 동시에 공급할 때 발생하는 슬래그를 균형있게 배출하지 못하는 경우 용융, 금속 상부에 적층되는 슬래그의 양이 증가하게 되고, 아크는 불안해져서 전극팁에의 슬래그 부착, 전극 팁의 발열 등에 의한 요인들이 송급을 불안하게 하여 연속 용접이 어려워진다. 본 연구에서는 탄뎀 EGW 기법을 실제로 현업에 적용하기 위해서는 안정적인 슬래그 배출에 착안하여 동당금의 형상에 따라 슬래그의 배출 성능을 확인하고 형상별 전류, 전압 파형을 측정하고, 파형 결과에 따라 아크 안정성을 평가함으로서 탄뎀 EGW 용접기법에 적정한 동당금을 설계한 결과를 소개하고자 하였다.

  • PDF

Influence of electrode geometry on electrical resistivity survey: Numerical study (전극의 기하학적 형상이 전기비저항 탐사에 미치는 영향: 수치 해석 연구)

  • Tae-Young Kim;Seung-Hun Lee;Hee-Hwan Ryu;Song-Hun Chong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.101-120
    • /
    • 2023
  • Electrical resistivity survey have been widely conducted at diverse scales, from a few centimeters for laboratory tests to kilometers for field tests. It measures electrical resistance through relationship of electric potential difference and current between two electrodes penetrated on the surface of medium, and eventually quantifies electrical resistivity known as inherent properties of the medium. In field or full-scale test, it assumes the electrodes as equivalent half-sphere electrodes that have a same surface area with different electrodes for ease of calculation because the contact area between electrode and medium is small and sufficient distance between two electrodes. However, small-scale laboratory test is significantly affected by the electrode geometries (penetrated depth, height, radius of electrode and distance between electrodes), which change the equipotential surface and electric current flow. Indeed, the electrode geometries may eventually cause a difference of electrical resistivity value. This study reviews the theoretical electrical resistance derived with various electrode geometries (half-sphere, cylinder, cylindrical with half-spherical tip, cylindrical with conical tip) and verifies the developed numerical module by comparing results with the theoretical electrical resistance. The distributions of electrical resistance around electrodes and among electrodes are analyzed. In addition, it is discussed how the electrical characteristic of cylindrical electrode with conical tip widely used in field test has effect on the electric current flow.

Effects of electrode tips on the weldability of galvannealed steel (Galvannealed steel의 점 용접성에 미치는 전극 팁의 영향)

  • 유병길;강춘식
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.11-18
    • /
    • 1987
  • Effects of electrode tips shapes of spot welding on the galvannealed steel have been studied, and the results obtained from this studies are as follows. 1) Expulsion had no effect on the shear strength of the specimen but been observed on the tensile strength of the specimen. 2) Effect of holding time after welding was neglegible when the spot welding supplies enough heat input. 3) Depending on the sopt welding tip shape it has different weldbility. It has better weldability in the order of pointed shape, truncated shape and dome shape. But the effect of coolind was just the opposite of the above order.

  • PDF

A Study on the Sheet Separation Reduction of Stainless Steel using Hollow Spot Electrode Tip for Resistance Spot Welding (가공 전극 팁을 이용한 스테인레스 저항 용접 외판 변형 저감)

  • Huh, Dong-Woon;Rhee, Se-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.679-684
    • /
    • 2011
  • Recently, STS 301L joints of side panels to frames for stainless steel rolling stock have been made out by using existing welding methods including Resistance Spot Welding, Laser Welding and Arc Welding. Most of the processes were jointed by spot welding because it is faster at welding and comparatively less expensive for investment in welding facilities than other methods. During spot welding, however, indentation of the metal surface was made due to pressure and melting property of welding. Moreover, since the melting metal was forced to periphery of the plate as indentation was made, sheet separation, which cracked apart between jointed sheets, was carried out. A slight deformation which resulted from sheet separation deteriorated the emotional quality of railway vehicles. This paper suggests that by processing conventional spot electrode tip appropriately, melting metal is able to push up around the processed part (Hollow Spot Electrode Tip) and prevent from being dislodged from first place to periphery. Consequently, sheet separation is remarkably decreased. Also, the emotional quality of appearance of stainless steel rolling stock is enhanced considerably.

A study on the weldability of galvannealed steel in spot welding process (Galvannealed Steel의 点溶接의 溶接性에 관한 硏究)

  • 류병길;강춘식
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.64-72
    • /
    • 1987
  • The Weldability of gavannealed steel using spot welder has been studied. The Results obtained are a follows; 1) Welds size and strength were increased depending on the welding time and welding current. But, the increasing rate has been decreased. 2) Deposited zinc has affected on the wear of welding tips and growth of welds but has not affected the weld's structures. 3) On shear testing of the specimen, button fracture has been observed and the value was approximately 540Kg (welds dia. approximately .phi.4mm)

  • PDF

Materials Compatibility and Structure Optimization of Test Department Probe for Quality Test of Fingerprint Sensor (지문인식센서 품질평가를 위한 검사부 프로브의 소재 적합성과 구조 최적화 연구)

  • Son, Eun-Won;Youn, Ji Won;Kim, Dae Up;Lim, Jae-Won;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.73-77
    • /
    • 2017
  • Recently, fingerprint sensors have widely used for personal information security, and require quality evaluation to reduce an error of their recognition rate. Quality of fingerprint sensors is evaluated by variation of their electrical resistance introducing by contacts between a probe tip and a sensor electrode, Investigation on the materials compatability and structure optimization of probe is required to reduce deformation of sensor electrode for repeatability of quality testing. Nickel, steel(SK4), beryllium copper, and phosphor bronze were considered as probe materials, and beryllium copper was the most appropriate for materials of probe tips, considering indentation and contact resistance while being contacted probe tips on electrodes. Probes of an inspection part were manufactured with the single-unit structure for physical damage prevention and parallel processing capability. Inspection repeatability was evaluated by voltage variation of fingerprint sensors when the specific current was applied. A single-unit inspection part with beryllium copper probe tips showed excellent repeatability within ${\pm}0.003V$ of its voltage variation.