• Title/Summary/Keyword: 전극가이드

Search Result 7, Processing Time 0.02 seconds

Development of Electrode Guide of Super-drill EDM and Electrical Discharge Machining of Small Hole for High Precision Semiconductor Die (초정밀 반도체 금형 제작을 위한 슈퍼드릴 방전가공기 전극가이드 개발과 미세홀 방전가공)

  • Park, Chan-Hae;Kim, Jong-Up;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though very hard materials and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM process is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods. In this experimental thesis, the super EDM drilling was developed for high precision semiconductor die steel and for minimization of leadframe width. It was possible to development of EDM drilling machine for high precision semiconductor die with the electrode guide and its modelling and stress analysis. The development of electrode with the copper pipe type was conducted to drill the hole from the diameter of 0.1mm to 3.0mm with the error of from 0.02mm to 0.12mm. From the SEM and EDX analysis, the entrance of the EDM drill was found the resolidification of not only the component of tungsten but also the component of copper.

  • PDF

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

Electrical Stimulation Parameters in Normal and Degenerate Rabbit Retina (정상 망막과 변성 망막을 위한 전기자극 파라미터)

  • Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa (RP) or age related macular degeneration (AMD). Recently Korean consortium launched for developing retinal prosthesis. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we performed voltage stimulation experiment both in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: $50k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. Mono-polar electrical stimulation was applied through one of the 60 MEA channel, and the remaining channels were used for recording. The electrical stimulus was a constant voltage, charge-balanced biphasic, anodic-first square wave pulse without interphase delay, and 50 trains of pulse was applied with a period of 2 sec. Different electrical stimuli were applied. First, pulse amplitude was varied (voltage: $0.5{\sim}3.0V$). Second, pulse duration was varied $(100{\sim}1,200{\mu}s)$. Evoked responses were analyzed by PSTH from averaged data with 50 trials. Charge density was calculated with Ohm's and Coulomb's law. In normal retina, by varying the pulse amplitude from 0.5 to 3V with fixed duration of $500{\mu}s$, the threshold level for reliable ganglion cell response was found at 1.5V. The calculated threshold of charge density was $2.123mC/cm^2$. By varying the pulse duration from 100 to $1,200{\mu}s$ with fixed amplitude of 2V, the threshold level was found at $300{\mu}s$. The calculated threhold of charge density was $1.698mC/cm^2$. Even after the block of ON-pathway with L-(1)-2-amino-4-phosphonobutyric acid (APB), electrical stimulus evoked ganglion cell activities. In this APB-induced degenerate retina, by varying the pulse duration from 100 to $1200{\mu}s$ with fixed voltage of 2 V, the threshold level was found at $300{\mu}s$, which is the same with normal retina. More experiment with APB-induced degenerate retina is needed to make a clear comparison of threshold of charge density between normal and degenerate retina.

  • PDF

A Study on Fabric Material Test of Conductive-Fabric Type ECG Electrode for u-Healthcare Application (u-헬스케어 응용을 위한 전도성 섬유 심전도 전극의 섬유적 특성 시험 연구)

  • Kang, B.K.;Hwang, I.H.;Yoo, S.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.31-41
    • /
    • 2012
  • The combination of developed medical devices and the convergence of IT fusion technologies, health variables became to can be measured without discomfort in everyday life regardless of wherever and whenever. because various types of u-Health medical devices have been developed. Also, by considering the users, biological signals can be measured without difference with wearing general clothing, that conductive fabric is being used as smart clothing. However, considering that there is a growing prevalence of the devices and a great interest in the development of u-Health devices, it is urgent to establish performance evaluation. Accordingly, writing guidelines by force to raise checking before marketed or collecting checks after at the market for standard test methods for evaluating the performance. In this paper, it was studied that the possibility of using conductive fabric as electrodes for Wearable u-Health Devices through the material test of the ffabric.

  • PDF

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.