• Title/Summary/Keyword: 전과정 영향평가

Search Result 182, Processing Time 0.032 seconds

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) From Sweetpotato (Ipomoea batatas L.) Production System (고구마의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.892-897
    • /
    • 2010
  • LCA (Life Cycle assessment) was carried out to estimate on carbon footprint and to establish of LCI (Life Cycle Inventory) database of sweetpotato production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.26E-01 kg $kg^{-1}$ and it of mineral fertilizer was 1.02E-01 kg $kg^{-1}$ for sweetpotato production. It was the highest value among input for sweetpotato production. And direct field emission was 2.47E-02 kg $kg^{-1}$ during sweetpotato cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 4.05E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Especially $CO_2$ for 71% of the GHG emission and the value was 2.88E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (32%) and sweetpotato cultivation (28%) for sweetpotato production system. $N_2O$ emitted from sweetpotato cultivation for 90% of the GHG emission. With LCIA (Life Cycle Impact Assessment) for sweetpotato production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP and POCP were 4.05E-01 $CO_2$-eq. $kg^{-1}$ and 5.08E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System (고추의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Park, Jung-Ah;Huh, Jin-Ho;Shim, Kyo-Moon;Ryu, Jong-Hee;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.904-910
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of pepper production system. Pepper production system was categorized the field cropping (redpepper) and the greenhouse cropping (greenpepper) according to pepper cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for redpepper production was more than that for greenpepper production system. The value of fertilizer input was 2.55E+00 kg $kg^{-1}$ redpepper and 7.74E-01 kg $kg^{-1}$ greenpepper. Amount of pesticide input were 5.38E-03 kg $kg^{-1}$ redpepper and 2.98E-04 kg $kg^{-1}$ greenpepper. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 5.84E-01 kg $kg^{-1}$ redpepper and 2.81E+00 greenpepper, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that the values of carbon footprint were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for redpepper and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenpepper; especially for 90% and 6% of $CO_2$ emission from fertilizer and pepper production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and pepper production (23%). The emission value of $CO_2$ from greenhouse production was more higher than it of field production system. The result of LCIA (Life Cycle Impact Assessment) was showed that characterization of values of GWP (Global Warming Potential) were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for field production system and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenhouse production system. It was observed that the process of fertilizer production might be contributed to approximately 52% for redpepper production system and 48% for greenpepper production system of GWP.

Environmental Impacts Assessment of Elementary School Buildings and Establishment of the Reference Target using Life Cycle Assessment Model (전과정평가 모델을 이용한 초등학교 건축물 환경영향 평가 및 비교기준 수립)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • In order to determine how much a new green building reduce the environmental impacts, it is necessary to establish the reference target for comparison. Therefore, this study aims to establish the reference target by evaluating the environmental impacts of existing buildings. To ensure this end, this study evaluated the environmental impacts(Global warming potential, ozone layer depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential) of 17 existing elementary school buildings, which are located in Seoul, Busan, Daegu, and Gwangju, by using the hybrid LCA model. As a result, the environmental impacts of the case buildings were clearly distinguished in different regions. Therefore, this study presented the reference targets which are appropriate to each region. For example, the reference targets for global warming potential, which can be used in Seoul, Busan, Daegu, and Gwangju, are 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$, respectively. The presented reference targets are expected to be useful for understanding how much environmental impacts can be reduced when a new green school building is constructed.

Environmental Effect Analysis for PV system using LCA (LCA를 이용한 태양광발전의 환경영향분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.737-741
    • /
    • 2007
  • This paper analyses the environmental effect of 100kw PV system installed in Tibet using Life Cycle Assessment(LCA). Then, energy payback time(EPT) and life-cycle $CO_2$ emission rate are estimated based on life-cycle of the PV system. As a result of the estimation, 6 year of EPT and 20 g-C/kWh of $CO_2$ emission rate are obtained. In China, average $CO_2$ emission rate of fossil fuel power generation plant is 260 g-C/kWh. This shows that PV system would be very promising for global environmental issues. For advanced LCA, we need to collect detailed and various data about raw material of PV system.

  • PDF

Environmental Effect Analysis for PV system using LCA (LCA를 이용한 태양광발전의 환경영향분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.11-16
    • /
    • 2007
  • This paper analyses the environmental effect of 100kw PV system installed in Tibet using Life Cycle Assessment(LCA). Then, energy payback time(EPT) and life-cycle CO2 emission rate are estimated based on life-cycle of the PV system. As a result of the estimation, 6 year of EPT and 20 g-C/kWh of CO2 emission rate are obtained. In China, average CO2 emission rate of fossil fuel power generation plant is 260 g-C/kWh. This shows that PV system would be very promising for global environmental issues. For advanced LCA, we need to collect detailed and various data about raw material of PV system.

  • PDF

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.

Integrated Solid Waste Management in Ecopolis -Applying LCA- (생태도시 조성을 위한 통합폐기물 관리방안 - 전과정평가(LCA) 기법의 응용 -)

  • Kim, Ik Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 1999
  • Applicability of LCA in establishing the integrated solid waste management were examined. Data were collected from current waste management system. LCA method was then applied to find environmentally sustainable waste management. The process comprises five steps : (1) collecting data, comparing the data with comprehensive urban planning as well, (2) analyzing the current waste treatment procedure leading to the database establishment, (3) LCA for the waste management system, (4) finding alternative scenarios based on the former steps, (5) establishing the optimum method in Ecopolis, best fitted to the local situation. The results and suggestions in this study are expected to yield comprehensive analysis as to current practices in waste management. More importantly it will be a valuable data in minimizing environmental burdens in connecting with living environments of Ecopolis. Information regarding the urban system and total environmental quality are expected from this study.

  • PDF

Current status of domestic and foreign LCI database and its international application (국내외 LCI DB 현황 및 국제통용성)

  • Ik Kim
    • Magazine of RCR
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2023
  • 기업의 ESG 활동의 일환으로 탄소중립과 순환경제의 개념을 활용한 기업의 성과를 고객에게 알리기 위하여 고품질의 전과정평가 결과에 대한 요구가 커지고 있다. 이를 위해서 LCI 데이터베이스에 대한 글로벌 요건에 맞는 고품질의 LCI 데이터베이스를 구축하고 관리하는 것이 국가적으로 중요하게 인식되고 있다. 이를 위해 UNEP는 GLAD 플랫폼을 만들었고, EU는 LCDN 플랫폼을 만들어 국제통용성을 고려한 고품질의 LCI 데이터베이스를 관리하려는 노력을 하고 있다. 국내 LCI 데이터베이스는 정부주도로 1999년부터 지속적으로 개발되어 활용되고 있지만, 국제통용성의 측면에서 볼 때, 기업의 생산현황을 반영한 최신의 일차데이터가 부족하고, LCI 데이터베이스에 포함된 목록항목들이 모든 환경영향을 충분히 평가할 수도 없으며, 데이터 정보제공의 형식인 LCI 데이터베이스 포맷이 글로벌 동향을 충분히 반영하지 못하고 있다. 이에 국제통용성을 고려한 국내 LCI 데이터베이스의 개발을 위해 산업을 대표하는 협회 또는 단체를 통해 매년 최신의 일차데이터를 확보하고, 이를 토대로 모든 환경영향을 평가할 수 있는 수준의 목록항목을 포함한 국내 LCI 데이터베이스를 개발하고, 이를 Eco-SPOLD_02 또는 ILCD 등의 최신 LCI 데이터베이스 포맷으로 관리하여야 한다.