• Title/Summary/Keyword: 전곡 현무암층

Search Result 6, Processing Time 0.023 seconds

Stratigraphic Analysis on Paleofluvial Outcrop underJeongok Basalt Layer in the Chugaryeong Rift Valley, Central Korea (추가령 열곡 내 전곡 현무암층 하부 고하성층 노두 층서 분석)

  • Lee, Min-Boo;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.55-63
    • /
    • 2013
  • The study deals with the geochemical analyses on the stratigraphy and sedimentation of the paleofluvial outcrop under Jeongok basalt layer in Chugaryeong Rift Valley. The results of field survey and analysis show that the paleofluvial sand and gravel layers had been constructed before the arrival of basaltic lava in Jeongok area of Hantan River valley in central Korea. XRF, for the main elements analysis, results present that JG2-3, a test sample from basalt weathering layer, has different characteristics from 5 other samples in the aspects of chemical weathering levels. ICP-MS, for analysis of the rare earth elements analysis, estimates that gravel layer, in the lowest part of the outcrop, had been originated from pre-lava bedrocks near the upper reach of the Hantan River, so the layer is almost not related to basalt layers. Finally, the OSL dating results in paleofluvial sedimentation had been in process until nearly 40,000 BP, before formation of lava plateau in the Jeongok area.

Paleomagnetic and Soil Chemical Studies on the Quaternary Paleosol Around the Hantan River (한탄강 인근 제4기 고토양층에 대한 토양화학 및 고지자기학적 연구)

  • 김복철;황재하;이윤수;이규호;남욱현
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.325-334
    • /
    • 2004
  • Detail downward variation records for paleomagnetic, XRD, photospectrogram, TOC results were obtained from the soil developed along the Hantan River, Gungpyeong-ri, Cheongsan-myeon, Yeoncheon-gun Gyeonggi-do. The unconsoildated sediments underlain by the Jeongok Quaternary Basalt indicates that the paleosol formed twice with different ages, as apparently indicated by sedimentological, paleomagnatic, and soil chemical properties. The paleosols recorded paleoclimate and paleoenvironments of about 271.21$\pm$89.8 ka before eruption of the Quaternary Jeongok Basalt.

Quaternary Geology and Paleoecology of Hominid Occupation of Imjin Basin (임진강유역 구석기 공작의 고생태학적 배경)

  • Seonbok Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.25-50
    • /
    • 1988
  • The survival of rich evidence of palaeolithic occupation found in the Imjin-Hant'an River basin was possible due to many fortuitous geological conditions provided there. Formation of the basalt plain in a narrow valley system which developed during the late Mesozoic insured the appearance of a basin of sedimentation in which archaeological sites would be preserved with relatively minor post-depositional disturbance. Geomagnetic and K-Ar dating indicates that lava flows occurred during the Brunes Normal Epoch. During and after the process of basin sedimentation, erosion of the plain was confined to the major channel of the present river system which developed along the structural joints formed by the lava flow. Due to characteristic columnar structure and platy cleavage of the basalt bedrock, erosion of the basalt bedrock occurred mainly in vertical direction, developing deep but narrow entrenched valleys cut into the bedrock. Consequently, the large portion of the site area remained intact. Cultural deposits formed on top of the basalt plain were left unmodified by later fluvial disturbances due to changes in the Hant'an River base-level, since they were formed about 20 to 40m above the modern floodplain. Sedimentological evidence of cultural deposits and palynological analysis of lacustrine bed formed in the tributary basin of the Hant'an River indicate that hominid occupation occurred in this basin under rapidly deteriorating climatic conditions. From three thermoluminescence dates, the timing of hominid occupation as represented by 'Acheulian-like' bifaces apparently occur sometime during 45,000 BP. Thus, deposition of cultural layers in this basin approximately coincides with the beginning of the second stadial of the final glacial, during which the Korean Peninsula must have had provided a sanctuary for prolonged human occupation.

  • PDF

The Development of the Hantan River Basin, Korea and the Age of the Sediment on the top of the Chongok Basalt (한탄강유역의 발달과정과 전곡현무암 위의 퇴적물의 연대)

  • Bae, Kidong
    • The Korean Journal of Quaternary Research
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 1989
  • The development of the Hantan river basin can be divided into three stages. The first stage include the ancient Hantan channel system prior to the Chongokni basalt which yield dates of about 0.6 mya from the K/Ar dating method. During this period the Baekuyri formation was formed. The Baekuyri formation is widely observed under the Chongokni basalt along the current river system. The second stage is the period when stream channels stayed on the top of the basalt plateau. Aggradation and deggradation were continued by meandering and braiding channel systems until major stream channel was formed. The currently remaining deposit on the top of the basalt was formed by lacustrine and fluvial systems in this period. During this period Pleistocene hominid was present on edge of water and flood plain and left Paleolithic material. This period was begun at the time of the final basalt flow dated about 300,000 BP. The third stage is designed for the time when the Hantan river channel was dropped down to a level from which the channel could not influence the top of the basalt any more No more deposit could be formed but erosion by surface water has been continued on the top of the basalt since then. The dropping of the Hantan river channel was probably not very long after the final flow of the basalt. Because of frost action and heavy concentrated precipitation in the basin area along with blocky and clumnar joint structure of the basalt, erosional process of the basalt is believed to have been carried out within a relatively short time. The lowering of the Hantan river channel was probably completed in a cycle of major fluctuation of world cimate. Also, the redclay on the top of the basalt is believed to have been formed during a warm period around 200,000 BP, which accords with the climatic change suggested above fair1y well. The Paleolithic materials in tile deposits fell accordingly into approximately same time period.

  • PDF

Formative Age and Process on Basalt of Lava Plateau in the Cheolwon and Yeoncheon Areas, Central Korea (철원 및 연천 지역 용암대지 현무암의 형성 시기 및 형성 과정)

  • Lee, Min-Boo;Seong, Yeong Bae;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.41-51
    • /
    • 2020
  • The Cheolwon-Pyeonggang Lava Plateau on the Chugaryeong tectonic valley is one of the most extensive volcanic areas in central Korea. However, formative age and process of the plateau still remains a controversial issue. This study presented OSL ages on the upper and lower sedimentary layers of basalt from four sites in the Cheolwon and Yeoncheon areas and estimated age and process of plateau formation based on sedimentary- and chrono-stratigraphy and topographic analysis. The results suggested that most of the initial topography of the plateau on the Cheolwon and Yeoncheon areas had been almost completed before approximately 90 ka. However, the last lava flow around Jangheung-ri, Cheolwon, seemed to occur until 20-30 ka and had led to complete the present plateau, while the last lava flow in the Jeongok area, Yeoncheon, was estimated to occur at approximately 40 ka.

A Study on the Paleomagnetism of Southern Korea since Permian (페름기(紀) 이후(以後) 한국(韓國)의 고지자기(古地磁氣)에 관(關)한 연구(硏究))

  • Kim, Kwang Ho;Jeong, Bong II
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.67-83
    • /
    • 1986
  • Oriented hand samples were collected from Gobangsan Formation and Nogam Formation in the north of Danyang and south of Yeongchun, from Bansong Group in and around Danyang, from Nampo Group in Chungnam Coalfield, from Gyeongsang Supergroup distributed from Waegwan through Daegu to Gyeongsan and from Daegu to Goryong, and from volcanic flows in Jeongog area and Jeju Island to study the paleomagnetism of southern Korea since Permian. Stepwise alternating field and thermal demagnetization experiments were carried out to determine optimum fields and temperatures. Observed mean paleomagnetic directions are as follows: $D=331.5^{\circ}$, $I=25.1^{\circ}$, $a95=12.8^{\circ}$ for Permian, $D=325.6^{\circ}$, $I=46.1^{\circ}$, $a95=11.8^{\circ}$ for Triassic, $D=313.4^{\circ}$, $I=43.1^{\circ}$, $a95=16.0^{\circ}$ for early Jurassic, $D=41.3^{\circ}$, $I=64.6^{\circ}$, $a95=4.5^{\circ}$ for early Cretaceous, $D=28.3^{\circ}$, $I=58.1^{\circ}$, $a95=2.3^{\circ}$ for late Cretaceous, $D=2.0^{\circ}$, $I=55.8^{\circ}$, $a95=6.6^{\circ}$for Quaternary. To describe the tectonic translocation of southern Korean block, northern Eurasian continental block was used as a reference frame. For each age since Permian the expected northern Eurasian field directions in terms of paleolatitude and declination were calculated. The paleolatitudes of Permian ($13.2^{\circ}N$) and early Jurassic ($25.1^{\circ}N$) obtained from the study area are quite different from those of Permian ($66.0^{\circ}N$) and early Jurassic ($68.1^{\circ}N$) which are expected for northern Eurasia. The declinations of Permian ($331.5^{\circ}$) and early Jurassic ($313.4^{\circ}$) are also quite different from those of the Permian ($56.6^{\circ}$) and the early Jurassic ($47.5^{\circ}$) expected for northern Eurasia. The Cretaceous paleolatitude is similar to the expected within error limit, but the declination for the same period is significantly different from that of the expected for the northern Eurasia. From the above evidences it is suggested that the south Korean land mass had moved from low latitude in Permian to north and sutured to northern continental block since early Jurassic. The relative rotations of early Cretaceous($27.4^{\circ}$) and late Cretaceous($10.8^{\circ}$) to northern Eurasian continent reveal that the Korean land mass might be rotated clockwise in two different times, probably in late Early Cretaceous and in Tertiary.

  • PDF