• Title/Summary/Keyword: 전계 이온 방출

Search Result 45, Processing Time 0.023 seconds

Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries (리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성)

  • Choi, Young-Jin;Ryu, Ho-Suk; Cho, Gyu-Bon;Cho, Kwon-Koo;Ryu, Kwang-Sun;Kim, Ki-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2009
  • $\beta-Ga_{2}O_{3}$ nanorods were synthesized by chemical vapor deposition method using nickel-oxide nanoparticle as a catalyst and gallium metal powder as a source material. The average diameter of nanorods was around 160 nm and the average length was $4{\mu}m$. Also, we confirmed that the synthesis of nanorods follows the vapor-solid growth mechanism. From the results of X-ray diffraction and HR-TEM observation, it can be found that the synthesized nanorods consisted of a typical core-shell structure with single-crystalline $\beta-Ga_{2}O_{3}$ core with a monoclinic crystal structure and an outer amorphous gallium oxide layer. Li/$\beta-Ga_{2}O_{3}$ nanorods cell delivered capacity of 867 mAh/g-$\beta-Ga_{2}O_{3}$ at first discharge. Although the Li/$\beta-Ga_{2}O_{3}$ nanorods cell showed low coulombic efficiency at first cycle, the cell exhibited stable cycle life property after fifth cycle.

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Effect of Temperature on Growth of Tin Oxide Nanostructures (산화주석 나노구조물의 성장에서 기판 온도의 효과)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2019
  • Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.

Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition (산성 pH 조건에서 차아염소산나트륨의 항균 활성 향상)

  • Son, Hyeon-Bin;Bae, Won-Bin;Jhee, Kwang-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.211-217
    • /
    • 2022
  • Sodium hypochlorite (NaClO) is a disinfectant widely used in hospitals and food industries because of its antimicrobial activity against not only bacteria but also fungi and virus. The antibacterial activity of NaClO lies in the maintenance of a stable hypochlorous acid (HClO) concentration, which is regulated by pH of the solution. HClO can easily penetrate bacterial cell membrane due to its chemical neutrality and the antibacterial activity of NaClO is thought to depend on the concentration of HClO in solution rather than hypochlorite ions (ClO-). In this study, we investigated the antibacterial activity of NaClO according to pH adjustment by means of time kill test and assays of Reactive Oxygen Species (ROS) and adenosine triphosphate (ATP) concentration changes before and after NaClO treatment. We also investigated that the degree of cell wall destruction through field emission scanning electron microscopy (FE-SEM). Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) exposed to 5 ppm NaClO at pH 5 exhibited 99.9% mortality. ROS production at pH 5 was 48% higher than that produced at pH 7. In addition, the ATP concentration in E. coli and S. aureus exposed to pH 5 decreased by 94% and 91%, respectively. As a result of FE-SEM, it was confirmed that the cell wall was destroyed in the bacteria by exposing to pH 5 NaClO. Taken together, our results indicate that the antibacterial activity of 5 ppm NaClO can be improved simply by adjusting the pH.

Growth of Fe3O4 Particles and Their Magnetic Properties (Fe3O4 분말제조와 자기적 특성)

  • Kwon, Woo-Hyun;Lee, Seung-Wha;Chae, Kwang-Pyo;Lee, Jae-Gwang;Sur, Jung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.5
    • /
    • pp.180-185
    • /
    • 2009
  • Fe$_3$O$_4$ particles, prepared by a sol-gel method, were examined for their structural characteristic, particle shapes and sizes, and their magnetic properties. Two different chemical compositions (using a mol rate Fe$^{2+}$/Fe$^{3+}$ = 1/2 and only Fe$^{2+}$) and 2-methoxyethanol were used for making proper solutions. And the solutions were refluxed and dry in a dry oven and the samples were fired at 200$\sim$600$^{\circ}C$ in the N$_2$ atmosphere. The formation of single-phased spinel ferrite powders was identified with the X-ray diffraction measurement as they were fired at above 250$^{\circ}C$. The result of scanning electron microscopy measurement showed the increase of annealing temperature yielded the particle size increased. The magnetic transition was observed using the Mossbaur spectroscopy measurement. As the ferrite, prepared with the chemical composition (Fe$^{2+}$/Fe$^{3+}$ = 1/2), was fired at 250$^{\circ}C$, 78% of the ferrite had a ferrimagnetic property and 22% of the ferrite was non-magnetic. In case of preparing the sample with only Fe$^{2+}$ and annealed at 200$^{\circ}C$, it had a single phased spinel structure but its particle size was too small to be ferrimagnetic. The annealing temperature above 250$^{\circ}C$ made powders a spinel structure regardless of the preparation method. They had a typical soft magnetic property and their saturation magnetization and coercivity became larger as the annealing temperature increased.