• Title/Summary/Keyword: 전개형 반사판 안테나

Search Result 12, Processing Time 0.025 seconds

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna (복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험)

  • Chae, Seungho;Oh, Young-Eun;Lee, Soo-Yong;Roh, Jin-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.58-65
    • /
    • 2018
  • The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

Structural Dynamic Characteristics of Modular Deployable Reflectors and Booms for the Large Mesh Antennas (대형 메쉬 안테나 개발을 위한 모듈식 반사판 및 붐 구조의 동적 특성 분석)

  • Roh, Jin-Ho;Jung, Hwa-Young;Kang, Deok-Soo;Kim, Ki-Seung;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.691-699
    • /
    • 2022
  • Large aperture antennas with long focal lengths in space have important application for telecommunications, Earth observation and science missions. This paper aims to understand the dynamics of deployment of large mesh antennas and to provide a multibody model for determining the driving forces for the design of reflectors and booms. The modular deployable reflector and boom are designed based on the deployment unit cell. A multibody dynamic model is formulated with Kane's equation and simulated using the pseudo upper triangular decomposition (PUTD) method for solving the constrained problem. Based on the multibody dynamic model, the kinetics of the deployment, the motor driving forces, and the structural dynamic deformation are investigated.

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas (구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Kim, Hyo-Tae;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.68-76
    • /
    • 2022
  • The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.

Thermal Characteristics Investigation of Space-borne Deployable Mesh Antenna according to the Mesh Weaving Density (OPI) (메쉬 제직 밀도(OPI)에 따른 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Kyu Baek;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, as Synthetic Aperture Radar (SAR), communication, and signal surveillance missions of spacecraft have become more advanced, research has been actively conducted on the deployable large mesh antenna system with excellent storage efficiency compared to the deployment area, and light weight. Deployable Mesh antennae are characterized by an increase in the number of Openings Per Inch (OPI), which is a measure of mesh weaving density as the mission frequency band increases, and this OPI change directly affects the thermal optical properties of the mesh antenna, so research on this is required. In this paper, to verify the thermal relationship between the optical properties of the mesh and antenna reflector, thermal sensitivity analysis between the mesh and the antenna reflector is performed by in-orbit thermal analysis with various optical characteristics of the mesh based on existing overseas research cases. In addition, the temperature gradient effect of the mesh reflector is analyzed.

Analysis of Radio Frequency (RF) Characteristics and Effectiveness according to the Number of Gores of Mesh Antenna (그물형 안테나의 고어 개수에 따른 Radio Frequency (RF) 특성 분석)

  • Kim, Jin-Hyuk;Lee, Si-A;Park, Tae-Yong;Choi, Han-Sol;Kim, Hongrae;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.364-374
    • /
    • 2021
  • This research discusses the change in radio frequency (RF) characteristics according to the number of Gores on the deployable mesh antennas for potential micro-satellite applications. The deployable type of lightweight mesh antenna can be used for various space missions such as communication/SAR/ SIGINT. In order to implement an ideal curvature of antenna surface, sufficient number of antenna rib structures are required. However, the increase in antenna ribs affects various design factors of the antenna system, especially total system mass, complexity of deployable mechanism and reliability. In this paper, the proper number of ribs for the mesh antenna were derived by comparison of electro-magnetic (EM) simulation results of example of antenna model in accordance with the various number of ribs.

Analysis of Faceted-Reflector Antenna (각면 반사판 안테나의 해석)

  • Kwak, Chang-Soo;Uhm, Man-Seok;Yom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Due to big demand for satellite and communication service using personal handheld terminals, demand for satellites with huge antennas is increasing correspondingly. While such large antennas are realized by various types of deployable antennas, the reflecting surface is made by many facets irrespective of deploying mechanisms. In order to analyze the faceted-reflector more accurately, an existing ray-tracing method is improved. The algorithm allows the rays to cross each other, which is the main characteristic of the faceted-reflector, and takes unevenness of amplitude and phase over the aperture plane into consideration. For the study of the effect of facet configuration, facet generating algorithm is devised. From the analysis algorithm and the facet-generating algorithm, it has been found that the number of facets in a radial direction affects both directivity and sidelobe level. On the other hand, the number of facets in a circumferential direction affects sidelobe level only.

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.